ImageVerifierCode 换一换
格式:PPT , 页数:114 ,大小:6.80MB ,
资源ID:176697      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-176697.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021年高考数学大二轮专题复习:立体几何与空间向量之空间中的平行与垂直)为本站会员(小****)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2021年高考数学大二轮专题复习:立体几何与空间向量之空间中的平行与垂直

1、专题五专题五 立体几何与空间向量立体几何与空间向量 第二编 讲专题 第第2 2讲讲 空间中的平行与垂直空间中的平行与垂直 考情研析 1.从具体内容上:以选择题、填空题的形式考查,主 要利用平面的基本性质及线线、 线面和面面平行和垂直的判定定理与性质定 理对命题的真假进行判断,属于基础题;以解答题的形式考查,主要是对 线线、线面与面面平行和垂直关系交汇综合命题,且多以棱柱、棱锥、棱台 或其简单组合体为载体进行考查 2.从高考特点上,难度中等,常以一道 选填题或在解答题的第一问考查 1 核心知识回顾核心知识回顾 PART ONE 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题

2、押题 专题作业专题作业 1.直线与平面平行的判定和性质 (1)判定 判定定理: 面面平行的性质: (2)性质: 01ab,b ,aa 02,a a 03l,l ,mlm 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 2直线和平面垂直的判定和性质 (1)判定 判定定理: 线面垂直的其他判定方法: a b c (2)性质 01ab,ac,b,c ,bcOa 02ab,ab 03l,l 04,l,a ,ala 05l,a la 06l,mlm 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 3两个平面平行的判定

3、和性质 (1)判定 判定定理: 面面平行的其他判定方法: a b (2)性质: 4两个平面垂直的判定和性质 (1)判定: (2)性质: 01a ,b ,abP,a,b 02l,l 03, 04,a,bab 01a ,a 02,l,a ,ala 2 热点考向探究热点考向探究 PART TWO 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 考向 1 空间线面位置关系的判定 例 1 (1)(多选)(2020 山东省烟台市模拟)已知 m,n 为两条不重合的直 线, 为两个不重合的平面,则( ) A若 m,n,则 mn B若 m,n,则 mn C若 mn,m

4、,n,则 D若 mn,n,则 m 答案 BC 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 解析 由 m,n 为两条不重合的直线, 为两个不重合的平面,知: 对于 A,若 m,n,则 m 与 n 相交、平行或异面,故错误;对 于 B,若 m,n,则由线面垂直、面面垂直的性质定理得 mn, 故正确;对于 C,若 mn,m,n,则由线面垂直的性质定理和面面 平行的判定定理得 ,故正确;对于 D,若 mn,n,则 m 或 m ,故错误故选 BC. 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 (2) (多选)

5、(2020 山东省实验中学高考预测卷)在棱长为1的正方体ABCD A1B1C1D1中,点 M 在棱 CC1上,则下列结论正确的是( ) 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 A直线 BM 与平面 ADD1A1平行 B平面 BMD1截正方体所得的截面为三角形 C异面直线 AD1与 A1C1所成的角为 3 DMBMD1的最小值为 5 答案 ACD 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 解析 对于 A,因为平面 ADD1A1平面 BCC1B1,BM 平面 BCC1B1, 即可判定直线 BM 与

6、平面 ADD1A1平行, 故正确; 对于 B, 如图 1, 平面 BMD1 截正方体所得的截面为四边形,故错误;对于 C,如图 2,异面直线 AD1与 A1C1所成的角为D1AC,即可判定异面直线 AD1与 A1C1所成的角为 3,故 正确;对于 D,如图 3,将正方体的侧面展开,可得当 B,M,D1共线时, MBMD1有最小值,最小值为 BD1 2212 5,故正确故选 ACD. 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 判断空间线面位置关系常用的方法

7、 (1)根据空间线面平行、 垂直关系的判定定理和性质定理逐项判断来解决 问题 (2)必要时可以借助空间几何模型, 如从长方体、 四面体等模型中观察线 面位置关系,并结合有关定理来进行判断. 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 (多选)(2020 山东省聊城市一模)正方体ABCDA1B1C1D1的棱长为1, E, F,G 分别为 BC,CC1,BB1的中点,则( ) 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 A直线 D1D 与直线 AF 垂直 B直线 A1G 与平面 AEF 平行 C平面 A

8、EF 截正方体所得的截面面积为9 8 D点 C 与点 G 到平面 AEF 的距离相等 答案 BC 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 解析 CC1与 AF 不垂直,而 DD1CC1,AF 与 DD1不垂直,故 A 错误;取 B1C1的中点 N,连接 A1N,GN,可得平面 A1GN平面 AEF,则直 线 A1G平面 AEF,故 B 正确;把截面 AEF 补形为四边形 AEFD1,由四边 形 AEFD1为等腰梯形可得平面 AEF 截正方体所得的截面面积 S9 8, 故 C 正 确;假设点 C 与点 G 到平面 AEF 的距离相等,即平面 A

9、EF 将 CG 平分,则 平面 AEF 必过 CG 的中点,连接 CG 交 EF 于点 H,而 H 不是 CG 中点,则 假设不成立,故 D 错误故选 BC. 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 考向 2 空间平行、垂直关系的证明 例 2 (2020 山东省青岛市高三期中)如图,在四棱锥 PABCD 中,底 面 ABCD 为梯形,ABCD,ABBC,AB2,PAPDCDBC1,面 PAD面 ABCD,E 为 AD 的中点 (1)求证:PABD; 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 解

10、 (1)证明:取 AB 的中点 F,连接 DF. DCAB 且 DC1 2AB, DCBF 且 DCBF, 四边形 BCDF 为平行四边形, 又 ABBC,BCCD1, 四边形 BCDF 为正方形 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 在 RtAFD 中,DFAF1,AD 2, 在 RtBCD 中,BCCD1,BD 2, AB2,AD2BD2AB2,BDAD, BD 面 ABCD,面 PAD面 ABCDAD,面 PAD面 ABCD, BD面 PAD,PA 面 PAD, PABD. 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题

11、VS押题押题 专题作业专题作业 (2)在线段 AB 上是否存在一点 G,使得 BC面 PEG?若存在,请证明 你的结论;若不存在,请说明理由 解 (2)在线段 AB 上存在一点 G,满足 AG1 4AB, 即 G 为 AF 的中点时,BC面 PEG, 证明如下:连接 EG,E 为 AD 的中点,G 为 AF 中点,GEDF, 又 DFBC,GEBC, GE 面 PEG,BC面 PEG,BC面 PEG. 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 空间平行、垂直关系证明的主要思想是转化,即通过判定定理、性质定 理将线线、线面、面面之间的平行、垂直关

12、系相互转化 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 (2020 江苏省泰州中学、宜兴中学、江都中学联考)如图,在四棱锥 S ABCD 中,已知 SASB,四边形 ABCD 是平行四边形,且平面 SAB平面 ABCD,点 M,N 分别是 SC,AB 的中点 求证:(1)MN平面 SAD; 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 证明 (1)取 SD 的中点 E,连接 EM,EA. M 是 SC 的中点,EMCD,且 EM1 2CD. 底面 ABCD 是平行四边形,N 为 AB 的中点, ANC

13、D,且 AN1 2CD, EMAN,EMAN, 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 四边形 EMNA 是平行四边形, MNAE. MN平面 SAD,AE 平面 SAD, MN平面 SAD. 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 (2)SNAC. 证明 (2)SASB,N 是 AB 的中点,SNAB, 平面 SAB平面 ABCD, 平面 SAB平面 ABCDAB,SN 平面 SAB, SN平面 ABCD, AC 平面 ABCD,SNAC. 核心知识回顾核心知识回顾 热点考向探究热点考向探

14、究 真题真题VS押题押题 专题作业专题作业 考向 3 立体几何中的翻折问题 例 3 (1)(2020 山东省潍坊市三模)如图 1,四边形 ABCD 是边长为 10 的菱形,其对角线 AC12,现将ABC 沿对角线 AC 折起,连接 BD,形成 如图 2 的四面体 ABCD,则异面直线 AC 与 BD 所成角的大小为_; 在图 2 中,设棱 AC 的中点为 M,BD 的中点为 N,若四面体 ABCD 的外接 球的球心在四面体的内部,则线段 MN 长度的取值范围为_ 2 ( 14,8) 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 解析 连接 BM,D

15、M,四边形 ABCD 是菱形,M 为棱 AC 的中点, ACBM,ACDM, 又 BMDMM,则 AC平面 BMD, BD 平面 BMD, 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 ACBD,则异面直线 AC 与 BD 所成角的大小为 2. 四边形 ABCD 是边长为 10 的菱形,其对角线 AC12, MA6,MB8. 设 O1是ABC 的外心,则 O1在中线 BM 上, 设过点 O1的直线 l1平面 ABC,易知 l1 平面 BMD, 设 O2是ACD 的外心,则 O2在中线 DM 上, 设过点 O2的直线 l2平面 ACD,易知 l2 平

16、面 BMD, 由对称性易知 l1,l2的交点 O 在直线 MN 上, 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 根据外接球的性质,知点 O 为四面体 ABCD 的外接球的球心, O1A2O1M2MA2,O1AO1MBM8, (8O1M)2O1M236,解得 O1M7 4, 令BMN,根据题意可知 BDCN, BDAN,且 CNANN, BD平面 ACN,又 MN 平面 ACN,BDMN, 0 2,MNBM cos 8cos 8. cos MN BM O1M OM , 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题

17、作业专题作业 OMMNO1MBM7 4814, 又 OM14,MN 14, 14MNPN C平面 PAN平面 BDD1B1 D过 P,A,C 三点的正方体的截面一定是等腰梯形 答案 BCD 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 解析 由 C,N,A 三点共线,得 CN,PM 交于点 A,因此 CM,PN 共 面,A 错误;记PAC,则 PN2AP2AN22APAN cos AP21 4AC 2 AP AC cos ,CM2AC2AM22AC AM cos AC21 4AP 2AP AC cos ,又 AP0,所以 CM2PN2,即 CMPN

18、,B 正确;在正方体 ABCDA1B1C1D1中,ANBD,BB1平面 ABCD,则 BB1 AN,BB1BDB,可得 AN平面 BDD1B1,AN 平面 PAN,从而可得平 面 PAN平面 BDD1B1,C 正确;在 C1D1上取一点 K,使得 D1KD1P,连 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 接 KP,KC,A1C1,易知 PKA1C1,又在正方体 ABCDA1B1C1D1中,A1C1 AC,所以 PKAC,所以 PK,AC 共面,PKCA 就是过 P,A,C 三点的 正方体的截面,它是等腰梯形,D 正确故选 BCD. 4 专题作

19、业专题作业 PART FOUR 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 一、 选择题: 在每小题给出的四个选项中, 只有一项是符合题目要求的 1(2020 武汉部分学校质量检测)若点 A,B,C,M,N 为正方体的顶 点或所在棱的中点,则下列各图中,不满足直线 MN平面 ABC 的是( ) 答案 D 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 解析 对于 A,因为 A,C,M,N 分别为所在棱的中点,由正方体的 性质知 MNAC,又 MN平面 ABC,AC 平面 ABC,所以 MN平面 ABC.

20、 对于 B,取 AC 的中点 E,连接 BE,由条件及正方体的性质知 MNBE.因 为 MN平面 ABC,BE 平面 ABC,所以 MN平面 ABC.对于 C,取 AC 的 中点 E,连接 BE,由条件及正方体的性质知 MNBE,因为 MN平面 ABC, BE 平面 ABC,所以 MN平面 ABC.对于 D,连接 AM,BN,由条件及正 方体的性质知四边形 AMNB 是等腰梯形,所以 AB 与 MN 所在的直线相交, 故不能推出 MN平面 ABC.故选 D. 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 2 (2020 长春高三质量监测)已知直线a

21、和平面, 有如下关系: , ,a,a,则下列命题为真的是( ) A B C D 答案 C 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 解析 如图正方体中,当直线 a 为 AB,平面 为平面 A1ABB1,平面 为平面 B1BCC1时,a,a ,故 A 不正确;当直线 a 为 DD1,平 面 为平面 A1ABB1,平面 为平面 B1BCC1时,a,a,故 B 不正确;若 a,a,则由面面垂直的判定定理可推出 ,故 C 正确; 当直线 a 为 A1D1,平面 为平面 A1ABB1,平面 为平面 D1DCC1时, a,a,故 D 不正确综上所述,C 为

22、真命题,故选 C. 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 3. (2020 四川省泸州市模拟)如图,在正方体 ABCDA1B1C1D1中,下列 命题正确的是( ) 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 A.AC 与 B1C 是相交直线且垂直 B.AC 与 A1D 是异面直线且垂直 CBD1与 BC 是相交直线且垂直 DAC 与 BD1是异面直线且垂直 答案 D 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 解析 如图,连接 AB1,可得AB1

23、C 为正三角形,可得 AC 与 B1C 是相 交直线且成 60角,故 A 错误;A1DB1C,AC 与 A1D 是异面直线且 成 60角,故 B 错误;BD1与 BC 是相交直线,所成角为D1BC,其正切 值为 2,故 C 错误;连接 BD,可知 BDAC,则 BD1AC,可知 AC 与 BD1 是异面直线且垂直,故 D 正确故选 D. 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 4(2020 河北省石家庄模拟)已知 , 是空间两个不同的平面,m,n 是空间两条不同的直线,则给出的下列说法正确的是( ) m,n,且 mn,则 ; m,n,且 mn

24、,则 ; m,n,且 mn,则 ; m,n,且 mn,则 . A B C D 答案 D 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 解析 对于,当 m,n,且 mn 时,有 或 , 相交, 所以错误;对于,当 m,n,且 mn 时,有 或 或 , 相交且不垂直,所以错误;对于,当 m,n,且 mn 时,得出 m,所以 ,正确;对于,当 m,n,且 mn 时, 成 立,所以正确综上知,正确的命题序号是.故选 D. 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 5 (2020 甘肃省靖远县高三第四次联考)

25、在正方体 ABCDA1B1C1D1中, E 为棱 CD 上的一点,且 CE2DE,F 为棱 AA1的中点,且平面 BEF 与 DD1 交于点 G,则 B1G 与平面 ABCD 所成角的正切值为( ) A 2 12 B 2 6 C5 2 12 D5 2 6 答案 C 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 解析 因为平面 ABCD平面 A1B1C1D1,所以 B1G 与平面 ABCD 所成 角即为 B1G 与平面 A1B1C1D1所成角,易知 B1G 与平面 A1B1C1D1所成角为 D1B1G.设 AB6,则 AF3,DE2,平面 BEF平面

26、 CDD1C1GE 且 BF平面 CDD1C1, 可知 BFGE, 易得FABGDE, 则AF AB DG DE, 即 3 6 DG 2 DG1,D1G5,在 RtB1D1G 中,tan D1B1G D1G B1D1 5 6 2 5 2 12 , 故 B1G 与平面 ABCD 所成角的正切值为5 2 12 ,故选 C. 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 6 在正方体 ABCDA1B1C1D1中, E 是棱 CC1的中点, F 是侧面 BCC1B1

27、 内的动点,且 A1F 与平面 D1AE 的垂线垂直,如图所示,下列说法不正确的 是( ) 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 A点 F 的轨迹是一条线段 BA1F 与 BE 是异面直线 CA1F 与 D1E 不可能平行 D三棱锥 FABC1的体积为定值 答案 C 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 解析 由题知 A1F平面 D1AE,分别取 B1C1,BB1的中点 H,G,连接 HG,A1H,A1G,BC1,可得 HGBC1AD1,A1GD1E,故平面 A1HG 平面 AD1E,故

28、点 F 的轨迹为线段 HG,A 正确;由异面直线的判定定理可 知 A1F 与 BE 是异面直线,故 B 正确;当 F 是 BB1的中点时,A1F 与 D1E 平 行,故 C 不正确;HG平面 ABC1,F 点到平面 ABC1的距离不变,故 三棱锥 FABC1的体积为定值,故 D 正确 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 7(2020 长沙模拟)在长方体 ABCDA1B1C1D1中,ABAD6,AA1 2,M 为棱 BC 的中点,动点 P 满足APDCPM,则点 P 的轨迹与长 方体的面 DCC1D1的交线长等于( ) A2 3 B C4

29、3 D 2 答案 A 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 解析 如图,由题意知,只需考虑点 P 在平面 DCC1D1上的情况,此时 ADDP,MCCP,所以 tan APDAD DP,tanCPM MC PC .因为APD CPM,所以AD DP MC PC .因为 M 是 BC 的中点,所以 AD2MC,所以 DP 2PC.在平面 D1DCC1内,以 D 为原点,DC 的方向为 x 轴的正方向,DD1的 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 方向为 y 轴的正方向,建立平面直角坐标系

30、,则 D(0,0),C(6,0).设 P(x, y),则 x2y22(x6)2y2,化简,得 y2(x8)242.该圆与平面 D1DCC1的交线长对应的圆心角为 6,则对应弧长为 64 2 3 . 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 8(2020 佛山模拟)如图,矩形 ABCD 中,AB1,BC2,点 E 为 AD 的中点,将ABE 沿 BE 折起,在翻折过程中,记点 A 对应的点为 A,二面 角 ADCB 的平面角的大小为 ,则当 最大时,tan ( ) A. 2 2 B 2 3 C1 3 D1 2 答案 D 核心知识回顾核心知识回顾

31、热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 解析 如图,取 BC 的中点 F,连接 AF,交 BE 于点 O,则 AFBE, 连接 OA,AF,则 OAOA 2 2 ,OABE,OFBE,又 OAOF O, 所以 BE平面 OAF, 又 BE 平面 ABCD, 所以平面 OAF平面 ABCD. 设 A在 AF 上的投影为 M,连接 AM,设AOM,则 AM 2 2 sin ,OM 2 2 cos ,过点 M 作 MNCD 交 CD 于点 N,连接 AN,则ANM.易 得 0, 2 , MN3 2 1 2cos , 所以当 最大时, tan 最大, tan 2 2 sin

32、3 2 1 2cos 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 2sin 3cos , 令 2sin 3cos t, 所以 2sin 3tt cos , 所以 3t 2sin t cos 2t2sin () 其中tan t 2 ,所以 3t 2t2,所以 t1 2,即 tan 1 2,故选 D. 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 二、选择题:在每小题给出的选项中,有多项符合题目要求. 9(2020 山东省青岛市高三期中)在正方体 ABCDA1B1C1D1中,下列 直线或平面与平面 ACD

33、1平行的是( ) A直线 A1B B直线 BB1 C平面 A1DC1 D平面 A1BC1 答案 AD 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 解析 如图,由 A1BD1C,且 A1B平面 ACD1,D1C 平面 ACD1,故 直线 A1B 与平面 ACD1平行,故 A 正确;直线 BB1DD1,DD1与平面 ACD1 相交,故直线 BB1与平面 ACD1相交,故 B 错误;显然平面 A1DC1与平面 ACD1相交,故 C 错误;由 A1BD1C,ACA1C1,且 A1BA1C1A1,AC D1CC,故平面 A1BC1与平面 ACD1平行,故

34、D 正确故选 AD. 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 10如图,在以下四个正方体中,直线 AB 与平面 CDE 垂直的是( ) 答案 BD 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 解析 在 A 中,AB 与 CE 的夹角为 45,所以直线 AB 与平面 CDE 不 垂直, 故不符合题意; 在 B 中, ABCE, ABDE, CEDEE, 所以 AB 平面 CDE,故符合题意;在 C 中,AB 与 EC 的夹角为 60,所以直线 AB 与平面 CDE 不垂直,故不符合题意;在 D 中

35、,ABDE,ABCE,DE CEE,所以 AB平面 CDE,故符合题意故选 BD. 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 11(2020 海南省高三三模)如图,四棱锥 PABCD 中,平面 PAD底 面 ABCD,PAD 是等边三角形,底面 ABCD 是菱形,且BAD60,M 为棱 PD 的中点,N 为菱形 ABCD 的中心,下列结论正确的有( ) 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 A直线 PB 与平面 AMC 平行 B直线 PB 与直线 AD 垂直 C线段 AM 与线段 CM 长度

36、相等 DPB 与 AM 所成角的余弦值为 2 4 答案 ABD 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 解析 如图,连接 MN,易知 MNPB,又 MN 平面 AMC,PB平 面 AMC,A 正确;在菱形 ABCD 中,BAD60,BAD 为等边三角 形设 AD 的中点为 O,连接 OB,OP,则 OPAD,OBAD,AD平 面 POB, 又 PB 平面 POB, ADPB, B 正确; 由平面 PAD平面 ABCD, 得POB 为直角三角形,设 AD4,则 OPOB2 3,PB2 6,MN 1 2PB 6.在MAN 中, AMAN2 3,

37、MN 6, 可得 cos AMN 2 4 , 故异面直线 PB 与 AM 所成角的余弦值为 2 4 , D 正确; cos MNCcos 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 MNAcos AMN 2 4 ,又 NC23,MN6, 2 4 612CM2 2 62 3,得 CM2 6AM,C 错误故选 ABD. 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 12(2020 山东省威海市一模)如图,在直角梯形 ABCD 中,ABCD, ABBC, BCCD1 2AB2, E 为 AB 的中点, 以

38、DE 为折痕把ADE 折起, 使点 A 到达点 P 的位置,且 PC2 3.则( ) 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 A平面 PED平面 EBCD BPCED C二面角 PDCB 的大小为 45 DPC 与平面 PED 所成角的正切值为 2 答案 AC 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 解析 A 项,PDADAE2DE222222 2,在三角形 PDC 中,PD2CD2PC2,所以 PDCD,又 CDDE,可得 CD平面 PED, CD 平面 EBCD,所以平面 PED平面 E

39、BCD,正确;B 项,若 PCED, 又 EDCD,可得 ED平面 PDC,则 EDPD,而EDPEDA45, 显然矛盾,故错误;C 项,二面角 PDCB 的平面角为PDE,又PDE ADE45,故正确;D 项,由上面分析可知,CPD 为直线 PC 与平 面 PED 所成的角,在 RtPCD 中,tan CPDCD PD 2 2 ,故错误故选 AC. 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 三、填空题 13在正三棱柱 ABCA1B1C1中,ABAA12,M,N 分别为 AA1,BB1 的中点,则异面直线 BM 与 C1N 所成角的余弦值为_

40、答案 3 5 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 解析 如图,连接 A1N,则 A1NBM,所以异面直线 BM 与 C1N 所成 的角就是直线 A1N 和 C1N 所成的角由题意,得 A1NC1N2212 5, 在A1C1N 中,由余弦定理得 cos A1NC1 554 2 5 5 3 5.所以异面直线 BM 与 C1N 所成角的余弦值为3 5. 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 14(2019 北京高考)已知 l,m 是平面 外的两条不同直线给出下列 三个论断: lm;m;l.

41、以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确 的命题:_ 答案 若 m 且 l,则 lm(或若 lm,l,则 m) 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 解析 已知 l,m 是平面 外的两条不同直线,由lm 与m,不 能推出l, 因为 l 可以与 平行, 也可以相交不垂直; 由lm 与l 能推出m; 由m 与l 可以推出lm.故正确的命题是 或. 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 15已知四边形 ABCD 是矩形,AB4,AD3.沿 AC 将ADC 折起到 ADC,

42、使平面 ADC平面 ABC,F 是 AD的中点,E 是 AC 上一点,给出 下列结论: 存在点 E,使得 EF平面 BCD; 存在点 E,使得 EF平面 ABC; 存在点 E,使得 DE平面 ABC; 存在点 E,使得 AC平面 BDE. 其中正确的结论是_(写出所有正确结论的序号). 答案 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 解析 对于,存在 AC 的中点 E,使得 EFCD,利用线面平行的判 定定理可得 EF平面 BCD;对于,过点 F 作 EFAC,垂足为 E,利用 面面垂直的性质定理可得 EF平面 ABC;对于,过点 D作 DEA

43、C,垂 足为 E, 利用面面垂直的性质定理可得 DE平面 ABC; 对于, 因为 ABCD 是矩形,AB4,AD3,所以 B,D在 AC 上的射影不是同一点,所以不 存在点 E,使得 AC平面 BDE. 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 16如图,AB 是圆锥 SO 的底面圆 O 的直径,D 是圆 O 上异于 A,B 的任意一点, 以 AO 为直径的圆与 AD 的另一个交点为 C, P 为 SD 的中点 现 给出以下结论: 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 SAC 为直角三角形;

44、 平面 SAD平面 SBD; 平面 PAB 必与圆锥 SO 的某条母线平行 其中正确结论的序号是_(写出所有正确结论的序号). 答案 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 解析 如图,连接 OC,SO底面圆 O,SOAC,C 在以 AO 为直 径的圆上, ACOC, OCSOO, AC平面 SOC, ACSC, 即SAC 为直角三角形,故正确;假设平面 SAD平面 SBD,在平面 SAD 中过点 A 作 AHSD 交 SD 于点 H,则 AH平面 SBD,AHBD,又 BDAD, BD平面 SAD,又 COBD,CO平面 SAD,COSC,

45、又在SOC 中,SOOC,在一个三角形内不可能有两个直角,故平面 SAD平面 SBD 不成立,故错误;连接 DO 并延长交圆 O 于点 E,连接 PO,SE,P 为 SD 的中点, O 为 ED 的中点, OP 是SDE 的中位线, POSE, 即 SE 平面 PAB,即平面 PAB 必与圆锥 SO 的母线 SE 平行故正确故正确是 . 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 四、解答题 17.在四棱锥 PABCD 中,底面 ABCD 是边长为 6 的

46、菱形,且ABC 60,PA平面 ABCD,PA6,F 是棱 PA 上的一动点,E 为 PD 的中点 (1)求证:平面 BDF平面 ACF; 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 解 (1)证明:由题意可知,PA平面 ABCD,则 BDPA,又底面 ABCD 是菱形,所以 BDAC,PA,AC 为平面 PAC 内两相交直线,所以 BD平面 PAC,BD 为平面 BDF 内一直线,从而平面 BDF平面 ACF. 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 (2)若 AF2,侧面 PAD 内是否存在过点 E 的一条直线,使得直线上任 一点 M 都有 CM平面 BDF,若存在,给出证明;若不存在,请说明理由 解 (2)侧面 PAD 内存在过点 E 的一条直线,使得直线上任一点 M 都有 CM平面 BDF. 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业专题作业 设 G 是 PF 的中点,连接 EG,CG,OF, 则 EGFD, CGOF