ImageVerifierCode 换一换
格式:DOCX , 页数:6 ,大小:35.39KB ,
资源ID:172303      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-172303.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021届中考数学一轮复习专题04:因式分解(知识点总结+例题讲解))为本站会员(争先)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2021届中考数学一轮复习专题04:因式分解(知识点总结+例题讲解)

1、因式分解因式分解 (知识点总结(知识点总结+ +例题讲解)例题讲解) 一、因式分解:一、因式分解: 1.1.因式分解的定义:因式分解的定义: 把一个多项式化成几个整式的 积积 的形式,这样的变形叫做这个多项式的因式分解; 【例题【例题 1 1】(2020河北)对于x-3xy = x(1-3y),(x+3)(x-1) = x 2+2x-3,从左到右的变形, 表述正确的是( ) A.都是因式分解 B.都是乘法运算 C.是因式分解,是乘法运算 D.是乘法运算,是因式分解 【答案】C 【解析】解:x-3xy = x(1-3y),从左到右的变形是因式分解; (x+3)(x-1) = x 2+2x-3,从

2、左到右的变形是整式的乘法,不是因式分解; 所以是因式分解,是乘法运算;故选:C。 【变式练习【变式练习 1 1】下列各式从左到右的变形中,是因式分解的为( ) Ax(ab)axbx Bx 21+y2(x1)(x+1)+y2 Cx 21(x+1)(x1) Dax+bx+cx(a+b+c) 【答案】C 【解析】A.等号右边不是几个整式乘积的形式,故不是因式分解; B.等号右边不是几个整式乘积的形式,故不是因式分解; C.等号右边是几个整式乘积的形式,且变形正确,左右两边相等,故是因式分解; D.左右两边不相等,故不是因式分解。 二、因式分解的方法与步骤:二、因式分解的方法与步骤: 1.因式分解的一

3、般方法: (1)提公因式法:一般地,如果多项式的各项有公因式可以把这个公因式提到括号外面,将 多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法; 用字母表示:mamambmbmcmcm(am(ab bc)c);或:am+an=a(m+n)am+an=a(m+n) 公因式的确定:取各项系数的最大公约数最大公约数,取各项相同的因式及其最低次幂最低次幂。 (2)运用公式法:果把乘法公式反过来,就可以用来把某些多项式分解因式,这种分解因式 的方法叫做运用公式法; 平方差公式:)( 22 bababa; 完全平方公式: 222 )(2bababa; 立方和公式:)( 2233 babababa

4、; 立方差公式:)(-(- 2233 babababa; (3)十字相乘法:x 2+(p+q)x+pq=(x+p)(x+q); (4)分组分解法:先分组,再提公因式或运用公式; 如:amanbm+bn=(aman)(bmbn)=a(mn)b(mn)=(mn)(ab) 2.因式分解的一般步骤:一提一提(提公因式);二套二套(套公式);三验三验(检验是否分解彻底)。 (1)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解; (2)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止在有理数范围内不能再分解为止; 3.因式分解要注意的几个问题: (1)每个因式分解到不能再分为止; (

5、2)相同因式写成乘方的形式; (3)因式分解的结果不要中括号; (4)如果多项式的第一项系数是负数,一般要提出“-”号,使括号内的第一项系数为正数; (5)因式分解的结果,如果是单项式乘以多项式,把单项式写在多项式的前面。 【例题讲解】【例题讲解】 1.1.利用提公因式法因式分解:利用提公因式法因式分解: 【例题【例题 2 2】(2020海南)因式分解:x 2-2x = 【答案】x(x-2) 【解析】解:原式= x(x-2);故答案为:x(x-2) 【变式练习【变式练习 2 2】把6x 3y23x2y2+8x2y3因式分解时,应提的公因式是( ) A3x 2y2 B2x 2y2 C6x 2y2

6、 Dx 2y2 【答案】D 【解析】6x 3y23x2y2+8x2y3x2y2(6x+38y); 故把6x 3y23x2y2+8x2y3因式分解时,应提的公因式是:x2y2;故选 D。 2.2.利用平方差公式因式分解:利用平方差公式因式分解: 【例题【例题 3 3】分解因式:(2x+y) 2(x+2y)2 【答案】3(x+y)(xy) 【解析】解:原式(2x+y+x+2y)(2x+yx2y)(3x+3y)(xy)3(x+y)(xy)。 【变式练习【变式练习 3 3】(2019江苏无锡)分解因式 4x 2y2的结果是( ) A(4x+y)(4xy) B4(x+y)(xy) C(2x+y)(2xy

7、) D2(x+y)(xy) 【答案】C 【解析】此题主要考查了公式法分解因式,正确应用公式是解题关键;直接利用平方差公式分 解因式得出答案; 4x 2y2(2x)2y2=(2x+y)(2xy)。 3.3.利用完全平方公式因式分解:利用完全平方公式因式分解: 【例题【例题 4 4】(2020 齐齐哈尔模拟)把多项式 x 2-6x+9 分解因式,结果正确的是( ) A.(x-3) 2 B.(x-9) 2 C.(x+3)(x-3) D.(x+9)(x-9) 【答案】A 【解析】原式利用完全平方公式分解即可;x 2-6x+9=(x-3)2。 【变式练习【变式练习 4 4】(2020哈尔滨)把多项式 m

8、 2n+6mn+9n 分解因式的结果是 【答案】n(m+3) 2 【解析】直接提取公因式 n,再利用完全平方公式分解因式得出答案; 原式n(m 2+6m+9)n(m+3)2 4 4. .利用利用立方和及立方差立方和及立方差公式因式分解:公式因式分解: 【例题【例题 5 5】因式分解:(x1) 3(y1)3。 【答案】(xy)(x 2xyy23x3y3) 【解析】(x1) 3(y1)3(利用立方和公式) 原式 (x1)(y1)(x+1) 2(x+1)(y1)(y1)2 (xy)(x 22x1)(xyxy1)(y22y1) (xy)x 22x1xyxy1y22y1 (xy)(x 2xyy23x3y

9、3)。 【变式练习【变式练习 5 5】因式分解:(xy) 3-(xy)3。 【答案】2y(3x 2+y2) 【解析】(xy) 3-(xy)3(利用立方差公式) 原式(x+y)-(x-y)(x+y) 2+(x+y)(x-y)+(x-y)2 2y(x 2+2xy+y2+x2-y2+x2-2xy+y2) 2y(3x 2+y2) 5.5.利用十字相乘法因式分解:利用十字相乘法因式分解: 【例题【例题 6 6】分解因式:x 22x24= 【答案】(x-6)(x+4) 【解析】x 2-2x-24(x-6)(x+4)。 【变式练习【变式练习 6 6】已知二次三项式 x 2+bx+c 分解因式为(x-3)(x

10、+1),则 b+c 的值为( ) A1 B-1 C-5 D5 【答案】C 【解析】二次三项式 x 2+bx+c 分解因式为(x-3)(x+1), x 2+bx+c(x-3)(x+1)x2-2x-3,b-2,c-3,故 b+c5;故选 C。 6 6. .利用利用分组法分组法因式分解:因式分解: 【例题【例题 7 7】因式分解:x 2-y2-2x+2y。 【答案】(x-y)(x+y-2) 【解析】利用分组分解法分解,先分别分解前两项和后两项,再提取公因式 xy 即可; x 2-y2-2x+2y = (x2-y2)-(2x-2y) =(x+y)(x-y)-2(x-y) =(x-y)(x+y-2)。

11、【变式练习【变式练习 7 7】(2020株洲模拟)分解因式:x 2+3x(x3)9= 【答案】(x3)(4x+3) 【解析】x 2+3x(x3)9 =x 29+3x(x3) =(x3)(x+3)+3x(x3) =(x3)(x+3+3x) =(x3)(4x+3)。 6.6.几种方法综合运用因式分解:几种方法综合运用因式分解: 【例题【例题 8 8】(2020宁夏)分解因式:3a 2-6a+3= 【答案】3(a-1) 2 【解析】首先提取公因式 3,进而利用完全平方公式分解因式得出答案; 解:原式=3(a 2-2a+1)=3(a-1)2。 【变式练习【变式练习 8 8】(2020新疆兵团)分解因式:am 2-an2 = 【答案】a(m+n)(m-n) 【解析】原式提取 a,再利用平方差公式分解即可; 解:原式= a(m 2-n2 )= a(m+n)(m-n), 故答案为:a(m+n)(m-n)。