1、2020-2021 学年华东师大新版八年级上册数学期末复习试题学年华东师大新版八年级上册数学期末复习试题 一选择题(共一选择题(共 8 小题,满分小题,满分 16 分,每小题分,每小题 2 分)分) 1一个正方体的体积扩大为原来的 27 倍,则它的棱长变为原来的( )倍 A2 B3 C4 D5 2如图,ABC 的一角被墨水污了,但小明很快就画出跟原来一样的图形,他所用定理是( ) ASAS BSSS CASA DHL 3计算 x2 x 3 的结果正确的是( ) Ax5 Bx6 Cx8 D5 4“早发现,早报告,早隔离,早治疗”是我国抗击“新冠肺炎”的宝贵经验,其中“早”字出现的频率 是( )
2、A B C D 5如图,EB 交 AC 于点 M,交 FC 于点 D,AB 交 FC 于点 N,EF90,BC,AEAF,给 出下列结论:其中正确的结论有( ) 12; BECF; ACNABM; CDDN; AFNAEM A2 个 B3 个 C4 个 D5 个 6下列选项中的尺规作图(各图中的点 P 都在ABC 的边上),能推出 PAPC 的是( ) A B C D 7如图,从边长为 a+2 的正方形纸片中剪去一个边长为 a 的小正方形,剩余部分可剪拼成一个不重叠、无 缝隙的长方形,若拼成的长方形一边长为 2,则它另一边的长是( ) A2a2 B2a C2a+1 D2a+2 8如图所示,在正
3、三棱柱 ABC 一 A1B1C1中,已知 ABBCCA2,AA14,一只蚂蚁从 A 点出发绕三 棱柱侧面两圈到达点 A1,则蚂蚁爬行的最短距离为( ) A B2+2 C4 D4 二填空题(共二填空题(共 6 小题,满分小题,满分 18 分,每小题分,每小题 3 分)分) 9计算:(12a3+6a23a)3a 10 如图, 方格纸中的每一个小方格都是边长为 1 个单位长度的正方形, 则图中阴影正方形的边长是 11如图,AB12m,CAAB 于 A,DBAB 于 B,且 AC4m,Q 点从 B 向 D 运动,每分钟走 2m,P 点 从 B 向 A 运动,P,Q 两点同时出发,P 点每分钟走 m 时
4、CAP 与PQB 全等 12古埃及人画直角方法:把一根长绳打上等距离的 13 个结,然后用桩钉成如图所示的一个三角形,其中 一个角便是直角,请说明这种做法的根据 13等腰三角形的一个外角度数为 100,则顶角度数为 14如图,小巷左右两侧是竖直的墙一架梯子斜靠在左墙时,梯子底端到左墙角的距离为 0.7m,顶端距 离地面 2.4m若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面 2m,则小巷的宽度为 m 三解答题(共三解答题(共 10 小题,满分小题,满分 66 分)分) 15把下列各数分别填在相应的集合中: ,3.14159265,0.8, 16(1)分解因式:a29; (2)分解因式
5、:3x3+6x2+3x 17先化简,再求值:(x+3)(x3)+x(4x),其中 x 18如图,在每一个小正方形的边长均为 1 的方格纸中,有线段 AB,点 A、B 均在小正方形的顶点上 (1)在图 1 的方格纸中画出以 AB 为一边的直角三角形 ABC,点 C 在小正方形的顶点上,且ABC 的 面积为 5; (2)在图 2 的方格纸中画出以 AB 为一边的等腰三角形 ABD,点 D 在小正方形的顶点上,且ABD 的 面积是 4,并直接写出 BD 的长度 19已知,ABC 中,ABAC,点 D 在 BC 边上,E 在ABC 的外部,连接 AD、AE、CE,且 ADAE, BACDAE (1)如
6、图 1,求证:BDCE (2)如图 2,当B45,BAD22.5时,连接 DE 交 AC 于点 F,作 DGDE 交 AB 于点 G,在 不 添 加 任 何 辅 助 线 的 情 况 下 , 请 直 接 写 出 图2中 四 个 顶 角 为45 的 等 腰 三 角 形 20某学校组建了书法、音乐、美术、舞蹈、演讲五个社团,全校每一名学生都参加且只参加了其中一个 社团的活动校团委从全校学生中随机选取部分学生进行了参加活动情况的调查,并将调查结果制成了 如图不完整的统计图请根据统计图完成下列问题: (1)参加本次调查有 名学生? (2)根据调查数据分析,被调查的学生中有 名学生参加了音乐社团? (3)
7、请你补全条形统计图 21定义adbc,若 10,求 x 的值 22(1)解方程组: (2)如图,把矩形纸片 ABCD 沿 EF 折叠, 使点 B 落在边 AD 上的点 B处, 点 A 落在点 A处 求证: BEBF 23如图,DEAB 于 E,DFAC 于 F,若 BDCD、BECF, (1)求证:AD 平分BAC; (2)已知 AC16,DE4,求ADC 的面积 24如图,已知点 O 到ABC 的两边 AB、AC 所在直线的距离相等,且 OBOC (1)如图,若点 O 在 BC 上,求证:ABC 是等腰三角形; (2)如图,若点 O 在ABC 内部,求证:ABAC; (3)若点 O 在ABC
8、 的外部,ABAC 还成立吗?请画图说明 参考答案与试题解析参考答案与试题解析 一选择题(共一选择题(共 8 小题,满分小题,满分 16 分,每小题分,每小题 2 分)分) 1解:一个正方体的体积扩大为原来的 27 倍,它的棱长变为原来的倍,即 3 倍 故选:B 2解:作DEF,使 DEAB,AD,EB, 根据 ASA 定理可知,DEF 与原来的图形一样, 他所用定理是 ASA, 故选:C 3解:x2 x 3x2+3x5 故选:A 4解:“早”字出现的频率是:, 故选:D 5解:EF90,BC,AEAF, ABEACF(AAS), BECF,AFAE,故正确, BAECAF, BAEBACCA
9、FBAC, 12,故正确, ABEACF, ABAC, 又BACCAB,BC ACNABM(ASA),故正确, CDDN 不能证明成立,故错误 12,FE,AFAE, AFNAEM(ASA),故正确, 故选:C 6解:A由此作图知 CACP,不符合题意; B由此作图知 BABP,不符合题意; C由此作图知ABPCBP,不能得到 PAPC,不符合题意; D由此作图知 PAPC,符合题意; 故选:D 7解:由拼图过程可得,长为(a+2)+a2a+2, 故选:D 8解:如图,把侧面展开两周,矩形对角线即为蚂蚁爬行的最短距离, 蚂蚁爬行的最短距离4, 故选:D 二填空题(共二填空题(共 6 小题,满分
10、小题,满分 18 分,每小题分,每小题 3 分)分) 9解:原式4a2+2a1 10解:根据题意得: 阴影正方形的边长是:2; 故答案为:2 11解:设 P 点每分钟走 xm 若 BPAC4,此时 APBQ8,CAPPBQ, t4, x1 若 BPAP6,ACBQ4,ACPBQP, t2, x3, 故答案为 1 或 3 12解:设相邻两个结点之间的距离为 a,则此三角形三边的长分别为 3a、4a、5a, (3a)2+(4a)2(5a)2, 以 3a、4a、5a 为边长的三角形是直角三角形 故答案为勾股定理的逆定理 13解:当 100的角是顶角的外角时,顶角的度数为 18010080; 当 10
11、0的角是底角的外角时,底角的度数为 18010080,所以顶角的度数为 180280 20; 故顶角的度数为 80或 20 故答案为:80或 20 14解:在 RtACB 中, ACB90,BC0.7 米,AC2.4 米, AB20.72+2.426.25 在 RtABD 中,ADB90,AD2 米,BD2+AD2AB2, BD2+226.25, BD22.25, BD0, BD1.5 米, CDBC+BD0.7+1.52.2(米) 故答案为:2.2 三解答题(共三解答题(共 10 小题,满分小题,满分 66 分)分) 15解:6, 是有理数, 如图所示: 16解:(1)原式(a+3)(a3)
12、; (2)原式3x(x2+2x+1) 3x(x+1)2 17解:原式x29+4xx2 4x9, 当 x时, 原式19 8 18解:(1)如图所示:ABC 即为所求; (2)如图所示:ABD 即为所求 19证明(1)BACDAE, BADCAE, 在BAD 和CAE 中, , BADCAE(SAS), BDCE; (2)B45,ABAC, BACB45, BAC90DAE, 又ADAE, ADEAED45, DGDE, GDE90, GDA45, BAD22.5, DAF67.5,BGDBAD+ADG67.5, BDG180BBGD67.5BGD, AFD180ADFDAF67.5DAF, AD
13、C180ACBDAC67.5DAC, BDG,ADC,ADF 都是顶角为 45的等腰三角形, BADCAE, BACE45, 又AFDCFE67.5, CFECEF67.5, CEF 是顶角为 45的等腰三角形 20解:(1)参加本次调查的学生人数为 2410%240 人, 故答案为:240; (2)参加“书法”社团的人数为:24015%36(人), 参加“舞蹈”社团的人数为:24020%48(人), 参加“音乐”社团的人数为:2403672482460(人), 故答案为:60; (3)补全条形图如图: 21解:adbc,10, (x1)(x1)(x3)(x+7)10 x22x+1x27x+3
14、x+2110 6x+2210, 解得,x2 22(1)解: 6+2 得:6x42, x7, 把 x7 代入得:y, 方程组的解为 (2)证明:矩形 ABCD 中,ADBC, BEFEFB, 又BFEEFB, BFEBEF, BEBF, 又BFBF, BEBF 23(1)证明:DEAB,DFAC, EDFC90, 在 RtBED 和 RtCFD 中 RtBEDRtCFD(HL), DEDF, DEAB,DFAC, AD 平分BAC; (2)解:DEDF,DE4, DF4, AC16, ADC 的面积是32 24(1)证明:过点 O 分别作 OEAB 于 E,OFAC 于 F, 由题意知,OEBOFC90, 在 RtOEB 和 RtOFC 中, , RtOEBRtOFC(HL), ABCACB, ABAC (2)证明:过点 O 分别作 OEAB 于 E,OFAC 于 F, 由题意知,OEOFBEOCFO90, 在 RtOEB 和 RtOFC 中, , RtOEBRtOFC(HL), OBEOCF, 又OBOC, OBCOCB, ABCACB, ABAC (3) 解: 不一定成立, 当A 的平分线所在直线与边 BC 的垂直平分线重合时 ABAC, 否则 ABAC(如 示例图)