ImageVerifierCode 换一换
格式:DOCX , 页数:10 ,大小:187.13KB ,
资源ID:161717      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-161717.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(第27讲 正弦定理、余弦定理(学生版)备战2021年新高考数学微专题讲义)为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

第27讲 正弦定理、余弦定理(学生版)备战2021年新高考数学微专题讲义

1、 第 1 页 / 共 10 页 第第 27 讲:正弦定理、余弦定理讲:正弦定理、余弦定理 一、课程标准 1、通过对任意三角形边长和角度关系的探索, 2、掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题. 二、基础知识回顾 1正弦定理 a sin A b sin B c sin C2R(R 为ABC 外接圆的半径) 正弦定 理的常 见变形 (1)a2Rsin A,b2Rsin B,c2Rsin C; (2)sin A a 2R,sin B b 2R,sin C c 2R; (3)abcsin Asin Bsin C; (4) abc sin Asin Bsin C a sin A. 2余

2、弦定理 a2b2c22bccos A; b2c2a22cacos B; c2a2b22abcos C. 余弦定理的常见变形 第 2 页 / 共 10 页 (1)cos Ab 2c2a2 2bc ; (2)cos Bc 2a2b2 2ca ; (3)cos Ca 2b2c2 2ab . 3三角形的面积公式 (1)SABC1 2aha(ha 为边 a 上的高); (2)SABC1 2absin C 1 2bcsin A 1 2acsin B; (3)S1 2r(abc)(r 为三角形的内切圆半径) 三、自主热身、归纳总结 1、在ABC 中,AB5,AC3,BC7,则BAC( ) A. 6 B 3

3、C.2 3 D.5 6 2、在ABC中,角A,B,C所对应的边分别为a,b,c.若角A,B,C依次成等差数列,且a1,b 3. 则SABC( ) A. 2 B. 3 第 3 页 / 共 10 页 C. 3 2 D2 3、在ABC中,角A,B,C所对的边分别为a,b,c,下列结论正确的是( ) A 222 2cosabcbcA BsinsinaBbA CcoscosabCcB DcoscossinaBbAC 4、在ABC中,角A,B,C的对边分别为a,b,c,若 sinsinsin ( 34 ABC k k 为非零实数) ,则下列结 论正确的是( ) A当5k 时,ABC是直角三角形 B当3k

4、时,ABC是锐角三角形 C当2k 时,ABC是钝角三角形 D当1k 时,ABC是钝角三角形 5、在ABC 中,若 A60 ,a4 3,b4 2,则 B 等于_ . 6在ABC中,角A,B,C满足 sin Acos Csin Bcos C0,则三角形的形状为_ 7、在ABC 中,AB 3,AC1,B30,ABC 的面积为 3 2 ,则 C_ 四、例题选讲 考点一、运用正余弦定理解三角形 例 1、 (2020 届山东实验中学高三上期中)在ABC中,若 13,3,120ABBCC,则AC= ( ) A1 B2 C3 D4 变式 1、 【2020 江苏淮阴中学期中考试】在ABC中,如果sin:sin:

5、sin2:3:4ABC ,那么tanC 第 4 页 / 共 10 页 _ 变式 2、 (2020 届山东省泰安市高三上期末)在ABC 中,内角 A,B,C 的对边分别为, ,a b c,若 coscossinABC abc , 222 6 5 bcabc,则tanB _ 变式 3、(2020贵阳模拟)在ABC中,内角A,B,C的对边a,b,c成公差为 2 的等差数列,C120. (1)求边长a; (2)求AB边上的高CD的长 变式 4、 (2020 届山东省潍坊市高三上期中)在ABC中,内角A,B,C所对的边分别为a,b,c已 知10ab,5c ,sin2sin0BB (1)求a,b的值: (

6、2)求sinC的值 第 5 页 / 共 10 页 方法总结:本题考查正弦定理、余弦定理的公式在解三角形时,如果式子中含有角的余弦或边的二次式, 要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时, 则要考虑两个定理都有可能用到考查基本运算能力和转化与化归思想 考点二、利用正、余弦定理判定三角形形状 例 2 ABC 中,内角 A,B,C 所对的边分别为 a,b,c,且 2asinA(2bc)sinB(2cb)sinC. (1)求 A 的大小; (2)若 sinBsinC1,试判断ABC 的形状 变式 1、(1)设ABC 的内角 A,B,C 所对的边分别为

7、 a,b,c,若 bcos Cccos Basin A,则ABC 的形 状为( ) A锐角三角形 B直角三角形 C钝角三角形 D不确定 (2)在ABC 中,角 A,B,C 的对边分别为 a,b,c,若sin A sin B a c,(bca)(bca)3bc,则ABC 的形状为( ) A直角三角形 B等腰非等边三角形 C等边三角形 D钝角三角形 第 6 页 / 共 10 页 变式 2、ABC 中,内角 A,B,C 所对的边分别为 a,b,c,若 a2b2c2ab,且 2cosAsinBsinC,试 确定ABC 的形状 方法总结: 判定三角形形状的途径:化边为角,通过三角变换找出角之间的关系;化

8、角为边,通过 代数变形找出边之间的关系正(余)弦定理是转化的桥梁考查转化与化归思想 考点三 运用正余弦定理研究三角形的面积 例 3、 (2020 届山东省临沂市高三上期末)在 3 cos 5 A, 2 5 cos 5 C ,sinsinsincCA bB, 60B ,2c , 1 cos 8 A 三个条件中任选一个补充在下面问题中,并加以解答. 已知ABC的内角 A,B,C 的对边分别为 a,b,c,若3a ,_,求ABC的面积 S. 第 7 页 / 共 10 页 变式 1、 (2020 届山东实验中学高三上期中)在ABC中,, ,a b c分别为内角, ,A B C的对边,若 3 2sins

9、insin,cos 5 BACB,且6 ABC S,则b_ 变式 2、 【2020 江苏溧阳上学期期中考试】 在ABC中, 角A,B,C所对的边分别为a,b,c, 若3b, 222 sinsin3sinABC , 1 cos 3 A ,则ABC的面积是_ 变式 3、 2017 南通调研在ABC 中,角 A,B,C 所对的边分别为 a,b,c,(abc)(abc)ab. (1)求角 C 的大小; (2)若 c2acosB,b2,求ABC 的面积 方法总结:1求三角形面积的方法 (1)若三角形中已知一个角(角的大小或该角的正、 余弦值),结合题意求解这个角的两边或该角的两边之 积,代入公式求面积

10、(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积总之,结合图 形恰当选择面积公式是解题的关键 第 8 页 / 共 10 页 2已知三角形面积求边、角的方法 (1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解 (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解 五、优化提升与真题演练 1、【2018 年高考全国理数】在ABC中, 5 cos 25 C ,1BC ,5AC ,则AB A4 2 B 30 C29 D2 5 2、【2018 年高考全国理数】ABC的内角A BC, ,的对边分别为a,b,c,若 ABC的面积为 222 4 a

11、bc ,则C A 2 B 3 C 4 D 6 3、【2019 年高考全国卷理数】ABC的内角 , ,A B C的对边分别为, ,a b c.若 6,2 , 3 bac B,则 ABC的面积为_ 4、【2019 年高考浙江卷】在ABC中,90ABC,4AB ,3BC ,点D在线段AC上,若 45BDC,则BD _,cosABD_ 第 9 页 / 共 10 页 5、 【2018 年高考浙江卷】在ABC 中,角 A,B,C 所对的边分别为 a,b,c若7a ,b=2,A=60,则 sin B=_,c=_ 6、【2019 年高考北京卷理数】在ABC 中,a=3,bc=2,cosB= 1 2 (1)求

12、b,c 的值; (2)求 sin(BC)的值 7、【2020 江苏镇江期中考试】 已知 ABC的内角 , ,A B C所对应的边分别为, ,a b c, 且 22 c o sacb cA (1)求角B的大小; (2)若2 3b ,4ac ,求ABC的面积 第 10 页 / 共 10 页 8、 【2020 江苏盐城中学月考】已知ABC中, 1 tan 4 A, 3 tan 5 B ,17AB 求: (1)角C的大小; (2)ABC 中最小边的边长 9、 【2020 江苏南京上学期开学考】在ABC 中,A 3 4 ,AB6,AC3 2 (1)求 sinB 的值; (2)若点 D 在 BC 边上,ADBD,求ABD 的面积