ImageVerifierCode 换一换
格式:DOCX , 页数:10 ,大小:884.77KB ,
资源ID:161702      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-161702.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(第38讲 数列的综合运用(学生版)备战2021年新高考数学微专题讲义)为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

第38讲 数列的综合运用(学生版)备战2021年新高考数学微专题讲义

1、 第 1 页 / 共 10 页 第第 38 讲:数列的综合运用讲:数列的综合运用 一、课程标准 1、理解等差数列、等比数列的概念,掌握等差数列、等比数列的通项公式与前 n 项和公式及其应用。 2、了解等差数列与一次函数、等比数列与指数函数的关系。 3、会用数列的等差关系或等比关系解决实际问题。 二、基础知识回顾 1、数列与函数综合问题的主要类型及求解策略 (1)已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题 (2)已知数列条件,解决函数问题,解决此类问题一般要利用数列的通项公式、前 n 项和公式、求和方 法等对式子化简变形 注意数列与函数的不同,数列只能看作是自变量为

2、正整数的一类函数,在解决问题时要注意这一特殊 性 数列在实际问题中的应用 2、现实生活中涉及银行利率、企业股金、产品利润、人口增长、产品产量等问题,常常考虑用数列的知识 去解决 1数列实际应用中的常见模型 (1)等差模型:如果增加(或减少)的量是一个固定的数,则该模型是等差模型,这个固定的数就是公差; (2)等比模型:如果后一个量与前一个量的比是一个固定的数,则该模型是等比模型,这个固定的数就 是公比; (3)递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化,则应考虑是第 n 项 an与第 n1 项 an1的递推关系还是前 n 项和 Sn与前 n1 项和 Sn1之间的递

3、推关系 2解决数列实际应用题的 3 个关键点 (1)根据题意,正确确定数列模型; (2)利用数列知识准确求解模型; 三、自主热身、归纳总结 1. 设等差数列 an的前 n 项和为 Sn,点(a1 010,a1 012)在直线 xy20 上,则 S2 021等于( ) A. 4 042 B. 2 021 C. 1 010 D. 1 012 2、(2019 广东潮州二模)我国古代名著九章算术中有这样一段话:“今有金箠,长五尺,斩本一尺,重 第 2 页 / 共 10 页 四斤,斩末一尺,重二斤”意思是:现有一根金箠,长 5 尺,头部 1 尺,重 4 斤,尾部 1 尺,重 2 斤若 该金箠从头到尾,每

4、一尺的质量构成等差数列,则该金箠共重( ) A6 斤 B.7 斤 C9 斤 D15 斤 3、 (2019 南充高三第二次诊断)已知等比例an中的各项都是正数,且 a1,1 2a3,2a2 成等差数列,则a10a11 a8a9 ( ) A. 1 2 B. 1 2 C. 32 2 D. 32 2 4、(2019 吉林长春 5 月联考)已知等差数列an的前 n 项和为 Sn,公差 d0,a6和 a8是函数 f(x)15 4 ln x1 2x 2 8x 的极值点,则 S8( ) A38 B38 C17 D17 5、已知 x0,y0,x,a1,a2,y 成等差数列,x,b1,b2,y 成等比数列,那么(

5、a1a2) 2 b1b2 的最小值是_ 6、(2019 河北石家庄 4 月模拟)数列an的前 n 项和为 Sn,定义an的“优值”为 Hna12a22 n1a n n , 现已知an的“优值”Hn2n,则 Sn_. 四、例题选讲 考点一 数列在数学文化与实际问题中的应用 例 1、(1)(2020 长沙模拟)我国古代数学著作九章算术有如下问题:“今有金箠,长五尺,斩本一尺,重 四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,长 5 尺,一头粗,一头细,在粗 的一端截下 1 尺,重 4 斤,在细的一端截下 1 尺,重 2 斤,问依次每一尺各重多少斤?”设该金箠由粗到细 是均匀变

6、化的,其重量为 M,现将该金箠截成长度相等的 10 段,记第 i 段的重量为 ai(i1,2,10),且 a1a2Tn,求证:anbn. 变式 2、设函数 f(x)1 2 1 x,正项数列an满足 a11,anf 1 an1 ,nN*,且 n2. 第 6 页 / 共 10 页 (1)求数列an的通项公式; (2)求证: 1 a1a2 1 a2a3 1 a3a4 1 anan12. 方法总结:数列与函数综合问题的主要类型及求解策略 (1)已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题 (2)已知数列条件,解决函数问题,解决此类问题一般要利用数列的通项公式、前 n 项和公

7、式、求和方 法等对式子化简变形 注意数列与函数的不同,数列只能看作是自变量为正整数的一类函数,在解决问题时要注意这一特殊 性 2数列与不等式综合问题的求解策略 解决数列与不等式的综合问题时,若是证明题,则要灵活选择不等式的证明方法,如比较法、综合法、 分析法、放缩法等;若是含参数的不等式恒成立问题,则可分离参数,转化为研究最值问题来解决 考点三、数列中的“定义型问题” 例 1、 (2019 苏州调研改编) 定义: 对于任意 nN*, xnxn2xn1仍为数列 xn中的项, 则称数列 xn为“回 归数列” (1)已知 an2n(nN*),判断数列 an是否为“回归数列”,并说明理由; (2)若数

8、列 bn为“回归数列”,b33,b99,且对于任意 nN*,均有 bnbn1成立,求数列 bn的通项 公式 第 7 页 / 共 10 页 变式 1、 (2020 届江苏省南通市如皋中学高三下学期 3 月线上模拟)如果无穷数列an满足条件: 2 1 2 nn n aa a ; 存在实数 M,使得 anM,其中 nN*,那么我们称数列an为 数列. (1)设数列bn的通项为 bn20n2n,且是 数列,求 M 的取值范围; (2)设cn是各项为正数的等比数列,Sn是其前 n 项和,c3 1 4 ,S3 7 4 ,证明:数列Sn是 数列; (3)设数列dn是各项均为正整数的 数列,求证:dndn1.

9、 变式 2、(2019 南京学情调研)如果数列an共有 k(kN*,k4)项,且满足条件: a1a2ak0; |a1|a2|ak|1, 则称数列an为 P(k)数列 (1) 若等比数列an为 P(4)数列,求 a1的值; (2) 已知 m 为给定的正整数,且 m2. 若公差为正数的等差数列an是 P(2m3)数列,求数列an的公差; 第 8 页 / 共 10 页 若 an q n1 3 ,1nm,nN*, mn 12 ,m1n2m,nN*, 其中 q 为常数,q1.判断数列an是否为 P(2m)数列,说明 理由 五、优化提升与真题演练 1、 (山东省日照市 2019 届高三联考) 已知等差数列

10、的公差为 2, 若成等比数列,是 的前项和,则等于( ) A-8 B-6 C10 D0 2、 (北京市朝阳区 2019 届高三模拟)天坛公园是明、清两代皇帝“祭天”“祈谷”的场所天坛公园中的圜丘 台共有三层(如图 1 所示) ,上层坛的中心是一块呈圆形的大理石板,从中心向外围以扇面形石(如图 2 所 示) 上层坛从第一环至第九环共有九环,中层坛从第十环至第十八环共有九环,下层坛从第十九环至第二 十七环共有九环;第一环的扇面形石有 9 块,从第二环起,每环的扇面形石块数比前一环多 9 块,则第二 十七环的扇面形石块数是_;上、中、下三层坛所有的扇面形石块数是_ n a 134 ,a a a n

11、S n a n 9 S 第 9 页 / 共 10 页 3、 (湖南省长沙市长郡中学 2019 届高三模拟)在各项均为正数的等比数列中,当取最 小值时,则数列的前项和为_ 4、已知数列an为等比数列,数列bn为等差数列,且 b1a11,b2a1a2,a32b36.(1)求数列an, bn的通项公式; (2)设 cn 1 bnbn2,数列cn的前 n 项和为 Tn,证明: 1 5Tn 1 3. 5、 (2020 浙江镇海中学高三 3 月模拟)在数列 n a中, 1 1a , 2 3a ,且对任意的nN*,都有 21 32 nnn aaa . ()证明数列 +1nn aa是等比数列,并求数列 n a

12、的通项公式; ()设 1 2n n nn b a a ,记数列 n b的前n项和为 n S,若对任意的nN*都有 1 n n Sm a ,求实数m的取 值范围. 6、 (2020 年江苏卷).已知数列 * () n anN的首项 a1=1,前 n项和为 Sn设 与 k 是常数,若对一切正整 数 n,均有 111 11 kkk nnn SSa 成立,则称此数列为“k”数列 (1)若等差数列 n a是“1”数列,求 的值; n a 31 8aa 4 a 2 n nan 第 10 页 / 共 10 页 (2)若数列 n a是“ 3 2 3 ”数列,且 an0,求数列 n a的通项公式; (3)对于给定的 ,是否存在三个不同的数列 n a为“3”数列,且 an0?若存在,求 的取值范围;若不 存在,说明理由,