ImageVerifierCode 换一换
格式:DOCX , 页数:14 ,大小:1.68MB ,
资源ID:158247      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-158247.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(广东省广州市2021届高三10月阶段训练数学试卷(含答案))为本站会员(理想)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

广东省广州市2021届高三10月阶段训练数学试卷(含答案)

1、1 广东省广州市广东省广州市 20212021 届高三年级阶段训练届高三年级阶段训练数学试卷数学试卷 一、单项选择题(本大题共 8 小题,每小题 5 分,共计 40 分在每小题给出的四个选项中,只有一个是符 合题目要求的,请把答案添涂在答题卡相应位置上) 1设集合 A0,1,2,B1x x ,则 AB 的子集个数为 A2 B4 C8 D16 2已知复数 z12i,则 2 z A3 B3 C5 D5 3设 n a是公差为正数的等差数列,若 2 5a , 13 16a a ,则 12 a A12 B35 C75 D90 4中国古代数学名著九章算术中有这样一个问题: “今有牛、马、羊食人苗苗主责之粟

2、五斗羊主 曰:“我羊食半马”马主曰:“我马食半牛”今欲衰偿之,问各出几何?”翻译过来就是:现有牛、 马、羊吃了人家的田里的青苗,青苗主人要求三畜的主人一共赔偿粟米 5 斗羊主人说: “我的羊所吃 数是马的一半”马主人说:“我的马所吃数是牛的一半”现在按照三畜所吃青苗数的比例进行分配 赔偿,问牛、马、羊的主人赔偿粟米斗数分别为 A 20 7 ,10 7 , 5 7 B 5 7 ,10 7 , 20 7 C 20 7 , 5 7 ,10 7 D10 7 , 5 7 , 20 7 5已知( )f x,( )g x分别是定义在 R 上的偶函数和奇函数,且 32 ( )( )f xg xxxa,则(2)

3、g A4 B4 C8 D8 6 某学校鼓励学生参加社区服务, 学生甲 2019 年每月参加社区服务的时长 (单位: 小时) 分别为 1 x, 2 x, , 12 x,其均值和方差分别为x和 2 s,若 2020 年甲每月参加社区服务的时长增加 1 小时,则 2020 年甲参 加社区服务时长的均值和方差分别为 Ax, 2 s B1 x, 2 1s Cx, 2 1s D1 x, 2 s 7 6 1 ()ax x 的展开式中的常数项为 160,则 a 的值为 A2 B2 C4 D4 8 在长方体 ABCDA1B1C1D1中, ABCC12, BC1, 点 M 在正方形 CDD1C1内, C1M平面

4、A1CM, 则三棱锥 MA1CC1的外接球表面积为 A11 2 B7 C11 D14 二、 多项选择题(本大题共 4 小题,每小题 5 分, 共计 20 分在每小题给出的四个选项中,至少有两个 是符合题目要求的,请把答案添涂在答题卡相应位置上) 9以下四个命题中,真命题的是 A若 pq 为真命题,则 p,q 均为真命题 2 B “x2”是“lg(3)0 x”的必要不充分条件 C若命题 p:x R, 2 10 xx ,则p: x R, 2 10 xx D若 ab0,则 a2abb2 10 已知P是双曲线C: 22 1 169 xy 右支上一点, F1, F2分别是C的左, 右焦点, O为坐标原点

5、, 1 9 OPOF 4 , 则 AC 的离心率为 5 4 BC 的渐近线方程为 4 3 yx C点 P 到 C 的左焦点距离是 23 4 DPF1F2的面积为 45 4 11已知函数( )sincos(sincos )f xxxxx,xR,则 A( )f x在(0, 4 )上单调递增 B( )f x是周期函数,且周期为2 C( )f x有对称轴 D函数( )( ) 1g xf x在(,)上有且仅有一个零点 12已知直线2yx 分别与函数 1 e 2 x y 和ln(2 )yx的图像交于点 A( 1 x, 1 y),B( 2 x, 2 y),则 A 12 ee2e xx B 12 e 4 x

6、x C 1 22 1 ln ln0 x xx x D 1 2 eln(2)2 x x 三、填空题(本大题共 4 小题, 每小题 5 分,共计 20 分请把答案填写在答题卡相应位置上) 13 已知 1 e, 2 e是互相垂直的单位向量, 若 12 3ee与 12 ee的夹角为 90, 则实数的值是 14函数( )sinf xxx在点( 2 ,() 2 f )处的切线方程为 15广东省 2021 年的新高考按照“312”的模式设置, “3”为全国统一高考的语文、数学、外语 3 门 必考科目; “1”由考生在物理、历史 2 门中选考 1 门科目; “2”由考生在思想政治、地理、化学、生 物学 4 门

7、中选考 2 门科目则甲,乙两名考生在选考科目中恰有两门科目相同的方法数为 16已知抛物线 C: 2 2(0)ypx p的焦点为 F,过点 F 且斜率为3的直线 l 交 C 于 A,B 两点,以线 段 AB 为直径的圆交 y 轴于 M,N 两点,设线段 AB 的中点为 Q,若点 F 到 C 的准线的距离为 3,则 sinQMN 的值为 四、解答题(本大题共 6 小题,共计 70 分请在答题卡指定区域内作答解答时应写出文字说明、证明过 3 程或演算步骤) 17 (本小题满分 10 分) 在acosBbsinA,b22aca2c2,sinBcosB2这三个条件中任选一个,补充在下面的 问题中,并解决

8、该问题 问题:已知ABC 的内角 A,B,C 的对边分别为 a,b,c, ,ABC 的面积为 2,a2,求 b 注:如果选择多个条件分别解答,按第一个解答计分 18 (本小题满分 12 分) 已知数列 n a的前 n 项和 n S满足 2 23 n Snn,数列 3 log n b是公差为1 的等差数列, 1 1b (1)求数列 n a, n b的通项公式; (2)设 2121nnn cab ,求数列 n c的前 n 项和 n T 19 (本小题满分 12 分) 某学校高三年级数学备课组的老师为了解新高三年级学生在假期的自学情况,在开学初进行了一次摸 底测试,根据测试成绩评定“优秀”、“良好”

9、、“要加油”三个等级,同时对相应等级进行量化:“优 秀”记 10 分,“良好”记 5 分,“要加油”记 0 分现随机抽取年级 120 名学生的成绩,统计结果如下所 示: 等级 优秀 良好 要加油 得分 120,150 90,120) 0,90) 频数 12 72 36 (1)若测试分数 90 分及以上认定为优良分数段在120,150,90,120),0,90)内女生的人数分 别为 4 人,40 人,20 人,完成下面的 22 列联表,并判断:是否有 95以上的把握认为性别与数学成绩 优良有关? 是否优良 优良 非优良 总计 4 性别 男生 女生 总计 (2)用分层抽样的方法,从评定为“优秀”、

10、“良好”、“要加油”的三个等级的学生中选取 10 人 进行座谈,现再从这 10 人中任选 2 人,所选 2 人的量化分之和记为 X,求 X 的分布列及数学期望 E(X) 附表及公式: 2 2 () ()()()() n adbc K ab cd ac bd ,其中nabcd P( 2 0 Kk) 0.15 0.10 0.05 0.025 0.010 0 k 2.072 2.706 3.841 5.024 6.635 20 (本小题满分 12 分) 如图,在四棱锥 EABCD 中,底面 ABCD 为菱形,BE平面 ABCD,G 为 AC 与 BD 的交点 (1)证明:平面 AEC平面 BED;

11、(2)若BAD60,AEEC,求直线 EG 与平面 EDC 所成角的正弦值 21 (本小题满分 12 分) 已知椭圆 C: 22 22 1 xy ab (ab0)经过点 P(1, 2 2 ),且两焦点与短轴的两个端点的连线构成一正 方形 (1)求椭圆 C 的方程; (2)过椭圆 C 的右焦点 F 的直线 l(与 x 轴不重合)与椭圆 C 交于 M,N 两点是否存在一定点 E(t, 0),使得 x 轴上的任意一点(异于点 E,F)到直线 EM,EN 的距离相等?若存在,求出 t 的值;若不存在, 说明理由 5 22 (本小题满分 12 分) 已知函数 2 1 ( )()ln1 2 f xxaxxaxa (1)若 a1,求函数( )f x的单调区间; (2)若 2 1 ( )ln2 2 f xaxxx在(1,)上恒成立,求整数 a 的最大值 6 7 8 9 10 11 12 13 14