ImageVerifierCode 换一换
格式:PPTX , 页数:31 ,大小:1.81MB ,
资源ID:153574      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-153574.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(14.2.1 平方差公式ppt课件(共31张ppt))为本站会员(画**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

14.2.1 平方差公式ppt课件(共31张ppt)

1、14.2 乘法公式 14.2.1 平方差公式,人教版 数学 八年级 上册,某同学在计算97103时将其变成(1003)(100+3)并很快得出结果,你知道他运用了什么知识吗?这节课,我们就来一起探讨上述计算的规律.,观察与思考,1. 掌握平方差公式的推导及应用.,2. 了解平方差公式的几何意义,体会数形结合的思想方法.,多项式与多项式是如何相乘的?,(x 3)( x5),=x2,5x,3x,15,=x2,8x,15.,(a+b)(m+n),=am,+an,+bm,+bn,平方差公式,面积变了吗?,相等吗?,(x 1)( x1); (m 2)( m2); (2m 1)(2m1); (5y z)(

2、5yz).,计算下列多项式的积,你能发现什么规律?,x2 12,m222,(2m)2 12,(5y)2 z2,这些计算结果有什么特点?,(a+b)(ab)=,a2b2,两数和与这两数差的积,等于这两个数的平方差.,公式变形:,1.(a b ) ( a + b) = a2 b2,2.(b + a )( b + a ) = a2 b2,平方差公式,注:这里的两数可以是两个单项式也可以是两个多项式等,(a+b)(ab)=(a)2(b)2,适当交换,合理加括号,平方差公式,公式中的a和b,既可以是具体的数,也可以是单项 式或者多项式; 2. 左边是两个二项式的积,并且有一项完全相同,另 一项互为相反数

3、; 3. 右边是相同项的平方减去相反项的绝对值的平方.,(a+b)(a b)=,a2 b2.,温馨提示,(1+x)(1x),(3+a)(3a),(0.3x1)(1+0.3x),(1+a)(1+a),a,b,a2b2,1,x,3,a,12x2,(3)2a2,a,1,a212,0.3x,1,( 0.3x)212,(ab)(a+b),口答下列各题: (1)(a+b)(a+b)=_. (2)(ab)(b+a)= _. (3)(ab)(a+b)= _. (4)(ab)(ab)= _.,a2b2,a2b2,b2a2,b2a2,例1 计算:(1) (3x2 )( 3x2 ) ; (2)(x+2y)(x2y)

4、.,(2) 原式= (x)2 (2y)2,= x2 4y2.,解: (1)原式=(3x)222,=9x24;,利用平方差公式计算,易错警示:当相同项带有“负号”时,必须用括号括起来.,1. 利用平方差公式计算: (1)(3x5)(3x5); (2)(2ab)(b2a); (3)(7m8n)(8n7m),解:(1)原式=(3x)2529x225;,(2)原式=(2a)2b24a2b2;,(3)原式=(7m)2(8n)249m264n2;,例2 计算: (1) 10298; (2) (y+2) (y2) (y1) (y+5) .,= 100222,解: (1) 10298,=10000 4,=(1

5、002)(1002),=9996;,= y24y24y+5,(2)(y+2)(y2) (y1)(y+5),= y222(y2+4y5),= 4y + 1.,利用平方差公式简便运算,(1) 5149; (2)(3x+4)(3x4)(2x+3)(3x2) .,解: (1) 原式=(501)(501),= 50212,=2500 1,=2499;,(2) 原式=(3x)242(6x2+5x6),= 9x2166x25x+6,= 3x25x10.,2. 计算:,例3 先化简,再求值:(2xy)(y2x)(2yx)(2yx),其中x1,y2.,解:原式4x2y2(4y2x2),原式51252215.,4

6、x2y24y2x2,5x25y2.,当x1,y2时,,利用平方差公式进行化简求值,3. 先化简,再求值: (3x)(3+x)+(x+1)(x1),其中x=2.,解:(3x)(3+x)+2(x+1)(x1) =9x2+2(x21) =9x2+2x22 =7+x2 当x=2时, 原式=7+22 =7+4=11,例4 对于任意的正整数n,整式(3n1)(3n1)(3n)(3n)的值一定是10的整数倍吗?,即(3n1)(3n1)(3n)(3n)的值是10的倍数,解:原式9n21(9n2),10n210.,(10n210)10=n21.,n为正整数,,n21为整数,利用平方差公式进行证明,对于平方差中的

7、a和b可以是具体的数,也可以是单项式或多项式.在探究整除性或倍数问题时,一般先将代数式化为最简,然后根据结果的特征,判断其是否具有整除性或倍数关系,4. 如果两个连续奇数分别是2n1,2n+1(其中n为正整数),证明两个连续整数的平方差是8的倍数.,证明:(2n+1)2(2n1)2 =(2n+1)+(2n1)(2n+1)(2n1) =(2n+1+2n1)(2n+12n+1) =4n2 =8n 因为8n是8的倍数,所以结论成立.,例5 王大伯家把一块边长为a米的正方形土地租给了邻居李大妈今年王大伯对李大妈说:“我把这块地一边减少4米,另外一边增加4米,继续租给你,你看如何?”李大妈一听,就答应了

8、你认为李大妈吃亏了吗?为什么?,a2a216,,解:李大妈吃亏了,理由:原正方形的面积为a2,,改变边长后面积为(a4)(a4)a216,,李大妈吃亏了,利用平方差公式解决实际问题,解决实际问题的关键是根据题意列出算式,然后根据公式化简算式,解决问题,5. 如图1,在边长为a的正方形中挖掉一个边长为b的正方形(ab ),把余下的部分剪成一个矩形(如图2).通过计算两个图形(阴影部分)的面积,验证了一个等式,这个等式是( ) A. a2b2 = (a+b) (ab) B. (a+b)2=a2+2ab+b2 C. (ab)2=a22ab+b2 D. (a+2b)(ab)=a2+ab2b2,A,1.

9、 化简(x1)(x+1)的结果是 ,2. 某同学化简a(a+2b)(a+b)(ab)出现了错误,解答过程如下:原式=a2+2ab(a2b2) (第一步) =a2+2aba2b2(第二步) =2abb2 (第三步) (1)该同学解答过程从第步开始出错,错误原因是 ; (2)写出此题正确的解答过程,原式=a2+2ab(a2b2)=a2+2aba2+b2=2ab+b2,x21,二,去括号时没有变号,1. 下列运算中,可用平方差公式计算的是() A(xy)(xy) B(xy)(xy) C(xy)(yx) D(xy)(xy),C,2. 计算(2x+1)(2x1)等于() A4x21 B2x21 C4x1

10、 D4x2+1,A,3. 两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_,10,(1)(a+3b)(a 3b);,=4a29;,=4x4y2.,原式=(2a+3)(2a3),=a29b2 ;,=(2a)232,原式=(2x2 )2y2,原式=(a)2(3b)2,(2)(3+2a)(3+2a);,(3)(2x2y)(2x2+y).,4. 利用平方差公式计算:,解:,解:,解:,5. 计算: 20152 20142016.,解:,20152 20142016,= 20152 (20151)(2015+1),= 20152, (2015212 ),=

11、20152, 20152+12,=1,6. 利用平方差公式计算:,(1)(a2)(a+2)(a2 + 4) 解:原式=(a24)(a2+4) =a416.,(2) (xy)(x+y)(x2+y2)(x4+y4).,解:原式=(x2y2)(x2+y2)(x4+y4),=(x4y4)(x4+y4),=x8y8.,先化简,再求值:(x1)(x1)x2(1x)x3,其中x2.,解:原式=x21x2x3x3,=2x21.,将x2代入上式,,原式=2221=7.,已知x1,计算:(1x)(1x)1x2,(1x)(1xx2)1x3, (1x)(1xx2x3) 1x4 (1)观察以上各式并猜想:(1x)(1xx2xn)_;(n为正整数),(2)根据你的猜想计算: (12)(1222232425)_; 222232n_(n为正整数); (x1)(x99x98x97x2x1)_;,1xn+1,63,2n12,x1001,平方差公式,内容,注意,两个数的和与这两个数的差的积,等于这两个数的平方差.,1.符号表示:(a+b)(ab)=a2b2,2.紧紧抓住 “一同一反”这一特征,在应用时,只有两个二项式的积才有可能应用平方差公式;对于不能直接应用公式的,可能要经过变形才可以应用.,