ImageVerifierCode 换一换
格式:PPTX , 页数:36 ,大小:7.85MB ,
资源ID:153554      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-153554.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(11.3.2 多边形的内角和ppt课件(共36张ppt))为本站会员(画**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

11.3.2 多边形的内角和ppt课件(共36张ppt)

1、11.3 多边形及其内角和 11.3.2 多边形的内角和,人教版 数学 八年级 上册,【思考】你知道正六边形的内角和是多少吗?,1. 能通过不同方法探索多边形的内角和与外角和公式.,2. 能运用多边形的内角和公式与外角和公式解决问题.,素养目标,你知道长方形和正方形的内角和是多少度?,三角形内角和是多少度?,三角形内角和是180.,都是360.,猜想任意四边形的内角和是多少度?,多边形的内角和,问题1:,问题2:,问题3:,猜想:四边形ABCD的内角和是360.,你能用以前学过的知识说明一下你的结论吗?,解法一:如图,连接AC, 所以四边形被分为两个三角形, 所以四边形ABCD内角和为 180

2、2=360.,猜想与证明,问题4:,解法二:如图,在CD边上任取一点E,连接AE,DE, 所以该四边形被分成三个三角形, 所以四边形ABCD的内角和为 1803(AEB+AED+CED) =1803180 =360.,E,解法三:如图,在四边形ABCD内部取一点E, 连接AE,BE,CE,DE, 把四边形分成四个三角形: ABE,ADE,CDE,CBE. 所以四边形ABCD内角和为: 1804(AEB+AED+CED+CEB) =1804360=360.,E,P,解法四:如图,在四边形外任取一点P,连接PA、PB、PC、PD将四边形变成有一个公共顶点的四个三角形.,所以四边形ABCD内角和为1

3、803 180= 360.,这四种方法都运用了转化思想,把四边形分割成三角形,转化到已经学了的三角形内角和求解.,结论: 四边形的内角和为360.,例1 如果一个四边形的一组对角互补,那么另一组对角有什么关系?试说明理由.,解:,如图,四边形ABCD中,A+ C =180.,A+B+C+D=(42) 180 = 360 ,,因为,BD= 360(AC) = 360 180 =180.,所以,如果一个四边形的一组对角互补,那么另一组对角也互补.,运用四边形内角和定理进行证明或计算,1. 如图,求ABCDEF的度数,解:连接BE.DOBCD, DOBCBEDEB, CDCBEDEB, AABCCD

4、DEFF AABCCBEDEBDEFF AABEBEFF. 在四边形ABEF中, AABEBEFF(42)180360, AABCCDDEFF360.,你能仿照求四边形内角和的方法,选一种方法求五 边形和六边形内角和吗?,内角和为1803 = 540.,内角和为1804 = 720.,问题5:,0,n 3,1,2,3,1,2,3,4,n 2,( n 2 )180,1180=180,2180=360,3180=540,4180=720,由特殊到一般,分割,多边形,三角形,分割点与多边形的位置关系,顶点,边上,内部,外部,转化思想,多边形的内角和公式,n边形内角和等于(n2)180 .,注意:n边

5、形的内角和随边数的增加而增加,每增加一条边其内角和增加180.多边形的内角和是180的整倍数.,归纳总结,例2 一个多边形的内角和比四边形的内角和多720,并且这个多边形的各内角都相等,这个多边形的每个内角是多少度?,解:设这个多边形边数为n,则 (n2)180=360+720, 解得n=8, 这个多边形的每个内角都相等, (82)180=1080, 它每一个内角的度数为10808=135,利用多边形内角和公式求角度或边数,2. 根据多边形的内角和完成下列题目.,(1) 一个多边形的内角和是720,这个多边形的边数是() A4条 B5条 C6条 D7条 (2) 若一个多边形的边数为8条,则这个

6、多边形的内角和是() A900 B540 C1080 D360 (3) 若一个多边形增加一条边,那么它的内角和() A增加180 B增加360 C减少360 D不变,C,C,A,例3 已知n边形的内角和=(n2)180 (1)甲同学说,能取360;而乙同学说,也能取630甲、乙的说法对吗?若对,求出边数n若不对,说明理由;,解: 360180=2, 630180=3.90, 甲的说法对,乙的说法不对, 360180+2=4 故甲同学说的边数n是4;,(2)若n边形变为(n+x)边形,发现内角和增加了360,用列方程的方法确定x,解:依题意有 (n+x2)180(n2)180=360, 解得x=

7、2 故x的值是2,3. 如图,在五边形ABCDE中,C=100,D=75,E=135,AP平分EAB,BP平分ABC,求P的度数,分析:根据五边形的内角和等于540,由C,D,E的度数可求EAB+ABC的度数,再根据角平分线的定义可得PAB与PBA的角度和,进一步求得P的度数,解:EAB+ABC+C+D+E=540,C=100,D=75,E=135, EAB+ABC=540CDE=230. AP平分EAB, PAB EAB, 同理可得ABP ABC, P+PAB+PBA=180, P=180PABPBA =180 (EAB+ABC)=180 230=65,用形状、大小完全相同的任意四边形可拼成

8、一块无空隙的地板,你知道这是为什么吗?,多边形的外角和,如图,在五边形的每个顶点处各取一个外角,这些外角的和叫做五边形的外角和,任意一个外角和它相邻的内角有什么关系? 五个外角加上它们分别相邻的五个内角和是多少?,互补,5180=900,五边形外角和,=360 ,=5个平角,五边形内角和,=5180,(52) 180,结论:五边形的外角和等于360.,这五个平角和与五边形的内角和、外角和有什么关系?,在n边形的每个顶点处各取一个外角,这些外角的和叫做n边形的外角和,n边形外角和,n边形的外角和等于360.,(n2) 180,=360 ,=n个平角n边形内角和,= n180 ,思考:n边形的外角

9、和又是多少呢?,与边数无关,回想正多边形的性质,你知道正多边形的每个内角是多少度吗?每个外角呢?为什么?,每个内角的度数是,每个外角的度数是,练一练: (1)若一个正多边形的内角是120 ,那么这是正_边形. (2)已知多边形的每个外角都是45,则这个多边形是 _边形.,六,正八,例4 已知一个多边形,它的内角和等于外角和的2倍,求这个多边形的边数.,解: 设多边形的边数为n. 它的内角和等于 (n2)180, 多边形外角和等于360, (n2)180=2 360. 解得 n=6. 这个多边形的边数为6.,多边形的内角和公式和外角和公式的综合应用,例5 已知一个多边形的每个内角与外角的比都是7

10、:2,求这个多边形的边数.,解法一:设这个多边形的内角为7x ,外角为2x, 根据题意得,7x+2x=180,,解得x=20.,即每个内角是140 ,每个外角是40 .,360 40 =9.,答:这个多边形是九边形.,还有其他解法吗?,解法二:设这个多边形的边数为n ,根据题意得,解得 n=9.,答:这个多边形是九边形.,探究新知,4. 如图,在正五边形ABCDE中,连接BE,求BED的度数,解:由题意得 AB=AE,所以AEB= (180A)=36, 所以BED=AEDAEB=10836=72.,1.已知正多边形的一个外角等于40,那么这个正多边形的边数为() A6 B7 C8 D9,解析:

11、正多边形的一个外角等于40,且外角和为360,则这个正多边形的边数是:36040=9,D,2.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是_,解析:设多边形的边数为n,根据题意,得 (n2)180=3360, 解得 n=8 则这个多边形的边数是8,8,1.判断 (1)当多边形边数增加时,它的内角和也随着增加.() (2)当多边形边数增加时,它的外角和也随着增加.() (3)三角形的外角和与八边形的外角和相等. (),2.一个多边形的每一个外角都是36,则这个多边形的边数是,10,3. 如图所示,小华从点A出发,沿直线前进10米后左转24,再沿直线前进10米,又向左转24,照这样走

12、下去,他第一次回到出发地点A时,走的路程一共是_米,150,4. 一个多边形从一个顶点可引对角线3条,这个多边形 内角和等于( ) A. 360 B. 540 C. 720 D. 900 ,B,一个多边形的内角和为1800,截去一个角后,求得到的多边形的内角和.,解:设多边形的边数为n,则有180 (n2)=1800,解得 n=12. 原多边形边数为12. 一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1, 新多边形的边数可能是11,12,13, 新多边形的内角和可能是1620,1800,1980.,如图,求1234567的度数.,解:如图, 3489, 1234567 1289567 五边形的内角和 540.,8,9,多边形的内角和,内角和计算公式,(n2) 180 (n 3的整数) 边数增加1,内角和增加180;内角和是180的整倍数.,外角和,多边形的外角和等于360 特别注意:与边数无关.,正多 边形,内角= ,外角=,