ImageVerifierCode 换一换
格式:DOCX , 页数:6 ,大小:165.32KB ,
资源ID:153005      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-153005.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(3.3.2(第1课时)一元二次不等式的解法 学案(含答案))为本站会员(画**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

3.3.2(第1课时)一元二次不等式的解法 学案(含答案)

1、3 3. .3.23.2 从函数观点看一元二次不等式从函数观点看一元二次不等式 第第 1 1 课时课时 一元二次不等式的解法一元二次不等式的解法 学习目标 1.从函数观点看一元二次方程了解二次函数的零点与方程根的关系.2.从函数观 点看一元二次不等式经历从实际情景中抽象出一元二次不等式的过程,了解一元二次不等 式的现实意义.3.借助一元二次函数的图象,了解一元二次不等式与相应函数、方程的联系 知识点一 一元二次不等式的概念 定义:只含有一个未知数,并且未知数的最高次数是 2 的整式不等式,叫作一元二次不等式 知识点二 二次函数与一元二次方程、不等式的解的对应关系 判别式 b24ac 0 0 0

2、)的图象 一元二次方程 ax2 bxc0(a0)的根 有两个不相等的实数 根 x1,x2(x10(a0) 的解集 (,x1)(x2,) , b 2a b 2a, R ax2bxc0) 的解集 (x1,x2) 思考 一元二次不等式与一元二次函数有什么关系? 答案 一元二次不等式 ax2bxc0(a0)的解集就是一元二次函数 yax2bxc(a0)的图 象在 x 轴上方的点的横坐标 x 的集合;ax2bxc0)的解集就是一元二次函数 yax2 bxc(a0)的图象在 x 轴下方的点的横坐标 x 的集合 1不等式 x22 的解集是_ 答案 x| 2x 2 解析 由 x22 可得 x220, 即(x

3、2)(x 2)0, 所以 2x 2, 则不等式 x22 的解集是x| 2x0 的解集是_ 答案 x x1 解析 2x2x1(2x1)(x1), 由 2x2x10 得(2x1)(x1)0, 解得 x1, 不等式的解集为 x x1 . 3不等式3x25x40 的解集为_ 答案 解析 原不等式变形为 3x25x40. 因为 (5)2434230, 所以 3x25x40 无解 由函数 y3x25x4 的图象可知, 3x25x40 的解集为x|2x0 的解集为x|2x3, 所以方程 ax2bxc0 的两根分别2,3. 一、一元二次不等式的解法 例 1 解下列不等式: (1)2x2x60. 解 (1)原不

4、等式可化为 2x2x60. 因为方程 2x2x60 的判别式 (1)24260, 所以函数 y2x2x6 的图象开口 向上,与 x 轴无交点(如图所示)观察图象可得,原不等式的解集为 R. (2)原不等式可化为 x26x90,即(x3)20,函数 y(x3)2的图象如图所示, 根据图象可得,原不等式的解集为x|x3 (3)方程 x22x30 的两根是 x11,x23. 函数yx22x3的图象是开口向上的抛物线, 与x轴有两个交点(1,0)和(3,0), 如图所示 观 察图象可得不等式的解集为x|x3 反思感悟 解一元二次不等式的一般步骤 第一步,将一元二次不等式化为一端为 0 的形式(习惯上二

5、次项系数大于 0) 第二步,求出相应一元二次方程的根,或判断出方程没有实根 第三步,画出相应二次函数示意草图,方程有根的将根标在图中 第四步,观察图象中位于 x 轴上方或下方的部分,对比不等式中不等号的方向,写出解集 跟踪训练 1 解下列不等式: (1)x25x60; (2)(2x)(x3)0. 解 (1)方程 x25x60 的两根为 x11,x26. 结合二次函数 yx25x6 的图象(图略)知,原不等式的解集为x|x6 (2)原不等式可化为(x2)(x3)0. 方程(x2)(x3)0 的两根为 x12,x23. 结合二次函数 y(x2)(x3)的图象(图略)知,原不等式的解集为x|x2 二

6、、二次函数与一元二次方程、不等式间的关系及应用 例2 已知关于x的不等式ax2bxc0的解集为x|2x3, 求关于x的不等式cx2bxa0 的解集为x|2x3可知 a0, 且 2 和 3 是方程 ax2bxc0 的两根, 由根与系数的关系可知b a5, c a6. 由 a0 知 c0,b c 5 6, 故不等式 cx2bxa0,即 x 25 6x 1 60, 解得 x 1 2, 所以不等式 cx2bxa0 的解集为 x x 1 2 . 延伸探究 1若本例中条件不变,求关于 x 的不等式 cx2bxa0 的解集 解 由根与系数的关系知b a5, c a6 且 a0. c0, 即 x2b cx a

7、 c0,即 x 25 6x 1 60. 解得1 2x 1 3, 故原不等式的解集为 x 1 2x0 的解集为x|2x3”变为“关于 x 的 不等式 ax2bxc0 的解集是 x 1 3x2 ”求不等式 cx2bxa0 的解集 解 由 ax2bxc0 的解集为 x 1 3x2 知 a0. 又 1 3 2c a0. 又1 3,2 为方程 ax 2bxc0 的两个根, b a 5 3, b a 5 3. 又c a 2 3,b 5 3a,c 2 3a, 不等式 cx2bxa0 变为 2 3 a x 2 5 3a xa0. 又a0,2x25x30, 故所求不等式的解集为 x 3x0)的解集,求解其他不等

8、式的解 集时,一般遵循: (1)根据解集来判断二次项系数的符号; (2)根据根与系数的关系把 b,c 用 a 表示出来并代入所要解的不等式; (3)约去 a,将不等式化为具体的一元二次不等式求解 跟踪训练 2 已知关于 x 的不等式 x2axb0 的解集为x|1x0 的解集 解 x2axb0 的解集为x|1x0. 解得 x1. bx2ax10 的解集为 x x1 . 1不等式 3x22x10 的解集为( ) A. x 1x1 3 B. x 1 3x1 C DR 答案 D 解析 因为 (2)243141280 的解集为 R. 2不等式 35x2x20 的解集为( ) A. x x3或x1 2 B

9、. x 1 2x3 C. x x3或x1 2 DR 答案 C 解析 35x2x202x25x30 (x3)(2x1)0 x3 或 x1 2. 3若 0m1,则不等式(xm) x1 m 0 的解集为( ) A. x 1 mx1 m或xm或x1 m D. x mx1 m 答案 D 解析 0m1m, 故原不等式的解集为 x mx1 m . 4已知集合 Ax|x2x20,RA 等于( ) A(1,2) B1,2 C(,1)(2,) D(12,) 答案 C 解析 x2x20,(x2)(x1)0, 1x2,即 A1,2 在数轴上表示出集合 A,如图所示 由图可得RA(,1)(2,) 5设集合 Mx|x2x0,Nx|x24,则 M 与 N 的关系为_ 答案 MN 解析 因为 Mx|x2x0 x|0x1, Nx|x24x|2x0 时,忽略 a 的正负导致出错