ImageVerifierCode 换一换
格式:DOCX , 页数:12 ,大小:695.13KB ,
资源ID:151529      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-151529.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020年全国各地中考数学真题分类汇编知识点46:几何最值)为本站会员(画**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2020年全国各地中考数学真题分类汇编知识点46:几何最值

1、知识点知识点 46 几何最值几何最值 一、选择题一、选择题 12 (2020泰安)如图,点 A,B 的坐标分别为 A(2,0) ,B(0,2) ,点 C 为坐标平面内一点, BC1,点 M 为线段 AC 的中点,连接 OM,则 OM 的最大值为( ) A 2 1 B 2 1 2 C2 2 1 D2 2 1 2 答案 B 解析本题考查了圆的概念、勾股定理、三角形中位线的性质以及动点运动最值问题,因为点 C 为坐标平面内一点, BC1, 所以点 C 在以点 B 为圆心、 1 长为半径的圆上, 在 x 轴上取 OA=OA=2, 当 A、B、C 三点共线时,AC 最大,则 AC=2 2 1,所以 OM

2、 的最大值为 2 1 2 ,因此本 题选 B 10 (2020无锡)如图,等边ABC 的边长为 3,点 D 在边 AC 上,AD1 2,线段 PQ 在边 BA 上运 动,PQ1 2,有下列结论: CP 与 QD 可能相等; AQD 与BCP 可能相似; 四边形 PCDQ 面积的最大值为31 3 16 ; 四边形 PCDQ 周长的最小值为 3 37 2 . 其中,正确结论的序号为( ) A B C D 答案 D 解析设 AQx,则 BP5 2x A B C O M x y M C B A/AOx y D Q P CB A (第 12 题) N M H G A BC D E FF E D Q P

3、CB A F E A BC P Q DD Q CB(P) A E 如图 1,当点 P 与 B 重合时,此时 QD 为最大,过点 Q 作 QEAC,AQ5 2,AE 5 4,QE 5 3 4 ,DE3 4,此时 QD 21 2 ,即 0QD 21 2 ;而3 3 2 CP3,两个范围没有交集,即 不可能相等;错误 若AQDBCP,则AD BP AQ BC,代入得 2x 25x+30,解得 x11,x23 2,都存在,正 确; 如图 2, 过点 D 作 DEAB, 过点 P 作 PFBC, S四边形PCDQ=SABCSAQDSBPC 3 4 321 2x 3 4 1 23 3 4 (5 2x) 3

4、 4 x 21 3 16 ,5 2x0,即 x 5 2,当 x= 5 2时面积最大为 31 3 16 ;正确; 如图, 将 D 沿 AB 方向平移1 2个单位得到 E, 连接 PE, 即四边形 PQDE 为平行四边形, QD=PE, 四边形周长为 PQ+QD+CD+CP=3+PE+PC,即求 PE+PC 的最小值,作点 E 关于 AB 的对称点 F, 连接 CF,线段 CF 的长即为 PE+PC 的最小值;过点 D 作 DGAB,AG1 4,EN=FN=HM= 3 4 , CH3 3 2 3 4 7 3 4 ,FHMN3 2 1 4 1 2 3 4,FC 39 2 ,四边形 PCDQ 周长的最

5、小值为 3 39 2 ,错误. 12(2020荆门)如图 6,在平面直角坐标系中,长为 2 的线段 CD(点 D 在点 C 右侧)在 x 轴上移 动,A(0,2),B(0,4),连接 AC、BD,则 ACBD 的最小值为( ) A25 B210 C62 D35 答案B 解析如图#,过点 B 作 BBx 轴(点 B在点 B 的左侧),且使 BB2,则 B(2,4);作 A 关于 x 轴的对称点 A,则 A(0,2);连结 AB交 x 轴于点 C;在 x 轴上向右截取 CD2,则此时 AC BD 的值最小,且最小值AB 22 26210故选 B x O y 图 6 D C B A x O y 图#

6、 D C B A B A 10 (2020南通)ABC 中,AB2,ABC60 ,ACB45 ,D 为 BC 的中点,直线 l 经过 点 D,过 B 作 BFl 于 F,过 A 作 AEl 于 E求 AEBF 的最大值为 A6 B22 C23 D32 答案A 解析过点 A 作 AHBC 于点 H,在 RtAHB 中,ABC60 ,得 BH1,AH3,在 RtAHC 中,ACB45 ,得 AC6 当直线 l 与 AB 相交时,延长 BF,过点 A 作 AMBF 于点 M,可得 AEBFAEFMBM,在 RtAMB 中,BMAB,当直线 lAB 时,最大值为 2; 当直线 l 与 AC 相交时,过

7、点 C 作 CHl 于点 H,由点 D 为 BC 中点可证明BFDCHD,BF CH, 延长 AE,过点 C 作 CNAE 于点 N, 可得 AEBFAECK AEENAN,在 RtACN 中,ANAC, 当直线 lAC 时最大值为6;所以 AEBF 的最大值为6 11(2020 恩施)如图,正方形ABCD的边长为 4,点E在AB上且1BE ,F为对角线AC上一 动点,则BFE周长的最小值为( ) A. 5 B. 6 C. 7 D. 8 答案B 解析连接 ED 交 AC 于一点 F,连接 BF, 四边形 ABCD 是正方形, 点 B 与点 D 关于 AC 对称, BF=DF, BFE的周长=B

8、F+EF+BE=DE+BE,此时周长最小, 正方形ABCD的边长为 4, AD=AB=4,DAB=90 , 点E在AB上且 1BE , M F E DBC A H l K N E F D A CBH AE=3, DE= 22 5ADAE , BFE的周长=5+1=6, 故选:B. 10.(2020永州)已知点 00 ,P x y和直线ykxb,求点 P到直线ykxb的距离 d可用公式 00 2 1 kxyb d k 计算 根据以上材料解决下面问题: 如图,C的圆心 C 的坐标为1,1, 半径为 1, 直线 l 的表达式为 26yx ,P是直线 l 上的动点,Q是C上的动点,则PQ的最小值是(

9、) A. 3 5 5 B. 3 5 1 5 C. 6 5 1 5 D. 2 【答案】B 【详解】过点 C 作直线 l 的垂线,交C于点 Q,交直线 l 于点 P,此时 PQ的值最小,如图, 点 C 到直线 l 的距离 00 22 2 1 1 63 5 5 1 12 kxyb d k ,C半径为 1, PQ的最小值是 3 5 1 5 ,故选:B. 二、填空题二、填空题 17(2020 绵阳)如图,四边形 ABCD 中,ABCD,ABC60 ,ADBCCD4,点 M 是 四边形ABCD内的一个动点, 满足AMD90 , 则点M到直线BC的距离的最小值为 答案332 解析延长 AD、BC 交于点 P

10、, 作 MHPB 于 H. ABCD, PD AD PC BC ,ABCDCP60 .ADBCCD4,PDPC,PDC 为等 边三角形,PDPCCD4,P60 . 由AMD90 ,可知点 M 在以 AD 为直径的E 上,且在四边形 ABCD 内的一个动点,根据垂线段最短可知 E、M、H 三点共线时 MH 最小.在 RtPEH 中,EP6,P60 ,EHEPsin60 33, MH 的最小值EHEM332. 18 (2020扬州)如图,在 ABCD 中,B=60 ,AB=10,BC=8,点 E 为边 AB 上的一个动点, 连接 ED 并延长至点 F ,使得 DF= 1 4 DE,以 EC、EF

11、为邻边构造 EFGC,连接 EG,则 EG 的最 小值为 . M D C BA H P M DC BA E (第 18 题图) 答案9 3 解析本题考查了解直角三角形、三角形相似的判定与性质三角形、平行四边形面积公 式、垂线段最短等知识,解题的关键是将问题转化为垂线段最短来解决过 A 作 AM BC 于 M, 设 EG、DC 交于 H 在 RtAMB 中, B=60 , AB=10, sinB= 3 2 AM AB , AM=5 3, EFGC 中,DF= 1 4 DE,ED= 4 5 DF,又 EF=GC, 4 5 ED GC ,EFCG,EHDGHC, 4 5 DHEDEH HCCGHG

12、,CD=AB=10 是定长,故不管动点 E 在 AB 上如何运动,H 始终是定点, H又 在EG上 , 它 到AB的 最 短 距 离 就 是HN , S ABCD=AMBCHNAB, 538 4 3 10 AMBC NH AB , 当动点 E 运动到与 N 重合 (见答图 2) , EG 最短, 此时, HG= 5 4 NH =5 3,EG 的最小值= HG+NH=9 3因此本题答案为9 3 (第 18 题答图 1) (第 18 题答图 2) 16 (2020 鄂州)如图,已知直线34yx 与 x、y轴交于 A、B两点, O的半径为 1,P为AB 上一动点,PQ切O于 Q点当线段PQ长取最小值

13、时,直线PQ交 y轴于 M点,a 为过点 M的 一条直线,则点 P到直线 a 的距离的最大值为_ 答案2 3 解析本题考查了圆和函数的综合问题,题解题中含义找到点的位置是解题的关键先找到PQ 长取最小值时P的位置即为OPAB时, 然后画出图形, 由于PM即为P到直线a的距离的最大值, 求出 PM长即可 解:如图, 在直线34yx 上,x0 时,y4,y0时,x 4 3 3 , OB4,OA 4 3 3 , 3 tan 3 OA OBA OB , OBA30 , 由PQ切O于 Q点,可知 OQPQ, 22 =PQOPOQ, 由于 OQ1,因此当 OP最小时PQ长取最小值,此时 OPAB, 1 2

14、 2 OPOB,此时 22 = 21 = 3PQ, 22 = 42 =2 3BP , 1 2 OQOP,即OPQ30 , 若使 P到直线 a 的距离最大,则最大值为 PM,且 M位于 x轴下方, 过 P 作 PEy轴于 E, 1 3 2 EPBP, 22 2 333BE , 4 3 1OE , 1 2 OEOP,OPE30 , EPM30 30 60 ,即EMP30 , 22 3PMEP, 故答案为:2 3 16(2020 宜宾)如图,四边形 ABCD 中,DAAB,CBAB,AD3,AB5,BC2,P 是边 AB 上的动点,则 PC+PD 的最小值是 答案5 2 解析要求 PC+PD 的最小

15、值,PC, PD 不能直接求,通过找点 C 对称点,根据“两点之间线段最短” 确定 P 点的位置,转化 PC,从而找出其最小值求解作点 C 关于 AB 的对称点 C,连接 DC 交 AB 于 P则 DC就是 PC+PD 的和的最小值由 DAAB,CBAB,得出 ADBC,进而 ADPBCP,AP:BPAD:BC3:2,AP+BPAB5,AP3,BP2,PD 22 ADAP 3 2,PC 22 BPBC 2 2,DCPD+PC32+2252, PC+PD 的最小值是 5 2 17 (2020东营)如图,在 RtAOB 中,OB=2 3,A=30,O 的半径为 1,点 P 是 AB 边上 的动点,

16、 过点 P 作O 的一条切线 PQ (其中点 Q 为切点) , 则线段 PQ 长度的最小值为 答案2 2 解析本题考查了切线的性质、 直角三角形的性质及勾股定理 难度适中, 注意掌握辅助线的作法, 注意得到当 OPAB 时,线段 PQ 最短是关键 连接 OP、OQ, PQ 是O 的切线,OQPQ,根据勾股定理知 222 PQOPOQ=-,当 OPAB 时,线段 PQ 最短. 在 RtAOB 中,OB=2 3,A=30,4 3AB =,6AO =, 2 1 OAOB= 2 1 OPAB,即 6 2 3 3 4 3 OP =, 22 312 2PQ =-= 17 (2020 毕节)如图,已知正方形

17、 ABCD 的边长为 4,点 E 是边 AB 的中点,点 P 是对角线 BD 上的动点,则 APPE 的最小值是_ 答案25, 解析本题考查正方形的性质,线段最短问题 解:正方形 ABCD 的边长为 4,点 E 是边 AB 的中点, BE2 点 P 是对角线 BD 上的动点,连接 PC,则 PCPA 连接 EC 交 BD 于点 P, 此时 APPEACPEEC 有最小值, 最小值 EC 22 EBBC 22 42 25 故答案为 25 A B O P Q E D A B C P E D A B C P 【解题过程有超纲内容】【解题过程有超纲内容】18.(2020永州)AOB在平面直角坐标系中的

18、位置如图所示,且 60AOB,在AOB内有一点4,3P,M,N 分别是 ,OA OB边上的动点,连接,PM PN MN, 则PMN周长的最小值是_ 【答案】4 5 【详解】分别作出点 P 关于 OA 和 OB 的对称点 1 P和 2 P,则 2 P(4,-3) ,连接 1 P 2 P,分别与 OA 和 OB交于点 M 和 N,此时, 1 P 2 P的长即为PMN周长的最小值 由60AOB可得直线 OA 的表达式为 y=2x,设 1 P(x,y),由 1 P 2 P与直线 OA 垂直及 1 P 2 P中点坐 标在直线 OA上可得方程组: 3 2 1 4 34 2? 22 y x yx 解得: 0

19、 5 x y 则 1 P(0,5), 由两点距离公式可得: 22 12 (04)(53)4 5PP 即PMN周长的最小值4 5故答案为4 5 三、解答题三、解答题 27 (2020扬州)如图 1.已知点 O 在四边形 ABCD 的边 AB 上,且 OA=OB=OC=OD=2,OC 平 分BOD,与 BD 交于点 G,AC 分别与 BD、OD 交于点 E、F. (1)求证:OCAD; (2)如图 2,若 DE=DF,求 AE AF 的值; (3)当四边形 ABCD 的周长取最大值时,求 DE 的值. (第 27 题图 1) (第 27 题图 2) 解析本题考查了平行线的判定与性质、圆周角定理、三

20、角形相似的判定与性质、三角形全等的判 定与性质、二次函数最值、勾股定理、等腰三角形的判定与性质等知识的综合运用,解题的关键是 作出适当的辅助线,找到解题的思路与途径. (1) 利用角平分线性质与外角知识证明BOC =OAD= 1 2 BOD 即可; (2)以 O 为圆心,OA 为半径作辅助圆,先利用直径所对圆周角是直角证ADB90,再利用 互余关系得出AOF90,从而求得 AD 的长,最后由ADEAOF 求得 AE AF 的值; (3) 如答图 2, 以 O 为圆心, OA 为半径作圆, 延长 BC 与 AD 交于点 H. 过 E 作 EQCD 于 Q. 先 证ACBACH 得 AB=AH=4

21、,BC=HC,于是 DC =CB=CH,再由HCDHAB 得到 HD 与 BC 的关系式,最后,设 BC=x,四边形 ABCD 的周长为 y,通过二次函数的最值求得 BC 的 长,从而可借助余弦函数求得 DE 的长. 答案解: (1)证明:OA=OB,OAD=ODA,BOD 是AOD 的外角,BOD= OAD+ODA=2OAD,OAD= 1 2 ODA,OC 平分BOD,BOC = 1 2 BOD, BOC =OAD,OCAD; (2) 如答图1, 以O为圆心, OA为半径作圆, DE=DF, DFE=DEF, OA=OB=OC=OD=2, 点 A、 D、 C、 B 共圆, AB 是O 的直径

22、, ADB90, DEF+DAE=90, OA=OC, OAC=OCA,OCAD, DAC=OCA,DAC=OAC,又DFE=AFO, OAC+AFO=90,AOF90,AD= 22 2 2AODO,AOFADB90, DAC=OAC,ADEAOF, 2 2 2 2 AEAD AFAO ; (第 27 题答图 1) (第 27 题答图 2) (第 27 题答图 3) (3) 如答图 2,以 O 为圆心,OA 为半径作圆,延长 BC 与 AD 交于点 H. 过 E 作 EQCD 于 Q.OA=OB=OC=OD=2, 点 A、 D、 C、 B 共圆, AB 是O 的直径, ACBADB90, AC

23、H90=ACB,OA=OC,OAC=OCA,OCAD,DAC=OCA, DAC=OAC,在ACB 和ACH 中,ACBACH,ACAC,BAC=HAC, ACBACH,AB= AH=4,BC=HC, 又BDH=180-ADB90,DC= 1 2 HB=CB=CH,点 A、D、C、B 共圆,HCD HAB,又HH,HCDHAB, HCHD HAHB ,即 42 BCHD BC ,HD= 1 2 BC2,设 BC=x, 四边形 ABCD 的周长为 y,则 y=AB+AD+CD+BC=4+4- 1 2 BC2+BC+BC=- 1 2 x2+2x+8= 21 26 2 x, 当 x=2 时,y 有最大值,当 BC=x=2 时(答图 3) ,AD=CD=BC,ADCDBC,且它们所对 圆心角都为 60,DCA=CDB=30,ED=EC,DQ= 1 2 CD=1,在 RtDQE 中, DQ DE =COSCDE, 1 DE = 3 2 ,DE= 2 3 3 .