ImageVerifierCode 换一换
格式:DOCX , 页数:6 ,大小:80.73KB ,
资源ID:150570      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-150570.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(1.1菱形的性质与判定 教案)为本站会员(画**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

1.1菱形的性质与判定 教案

1、11 菱形的性质与判定菱形的性质与判定 第第 1 课时课时 菱形的性质菱形的性质 1通过折、剪纸张的方法,探索菱形独特的性质,理解菱形与平行四边形之间的联系; 2通过学生间的交流、讨论、分析、类比、归纳,运用已学过的知识总结菱形的特征; 3掌握菱形的概念和菱形的性质以及菱形的面积公式的推导(重点、难点) 一、情景导入 请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形 的边,使之一组邻边相等,从而引出菱形概念 让学生举一些日常生活中所见到过的菱形的例子 总结:(1)菱形必须满足两个条件:一是平行四边形;二是有一组邻边相等(2)菱形是特殊的平 行四边形,即当一个

2、平行四边形的一组邻边相等时,该平行四边形是菱形不能忽略平行四边形这 一前提,而错误地认为有一组邻边相等的四边形就是菱形 二、合作探究 探究点一:菱形的性质 【类型一】 菱形的四条边相等 如图所示,在菱形 ABCD 中,已知A60 ,AB5,则ABD 的周长是( ) A10 B12 C15 D20 解析:根据菱形的性质可判断ABD 是等边三角形,继而根据 AB5 求出ABD 的周长 四边形 ABCD 是菱形, ABAD. 又A60 , ABD 是等边三角形, ABD 的周长3AB15. 故选 C. 方法总结:如果一个菱形的内角为 60 或 120 ,则两边与较短对角线可构成等边三角形,这是 非常

3、有用的基本图形 【类型二】 菱形的对角线互相垂直 如图所示,在菱形 ABCD 中,对角线 AC、BD 相交于点 O,BD12cm,AC6cm,求菱 形的周长 解析:由于菱形的四条边都相等,所以要求其周长就要先求出其边长由菱形性质可知,其对 角线互相垂直平分,因此可以在直角三角形中利用勾股定理进行计算 解:因为四边形 ABCD 是菱形, 所以 ACBD, AO1 2AC,BO 1 2BD. 因为 AC6cm,BD12cm, 所以 AO3cm,BO6cm. 在 RtABO 中,由勾股定理,得 AB AO2BO2 32623 5(cm) 所以菱形的周长4AB43 512 5(cm) 方法总结:因为菱

4、形的对角线把菱形分成四个全等的直角三角形,所以菱形的有关计算问题常 转化到直角三角形中求解 【类型三】 菱形是轴对称图形 如图,在菱形 ABCD 中,CEAB 于点 E,CFAD 于点 F,求证:AEAF. 解析:要证明 AEAF,需要先证明ACEACF. 证明:连接 AC. 四边形 ABCD 是菱形, AC 平分BAD, 即BACDAC. CEAB,CFAD, AECAFC90 . 在ACE 和ACF 中, AECAFC, BACDAC, ACAC, ACEACF. AEAF. 方法总结:菱形是轴对称图形,它的两条对角线所在的直线都是它的对称轴,每条对角线平分 一组对角 探究点二:菱形的面积

5、的计算方法 如图所示, 在菱形 ABCD 中, 点 O 为对角线 AC 与 BD 的交点, 且在AOB 中, AB13, OA5,OB12.求菱形 ABCD 两对边的距离 h. 解析:先利用菱形的面积等于两条对角线长度乘积的一半求得菱形的面积,又因为菱形是特殊 的平行四边形, 其面积等于底乘高, 也就是一边长与两边之间距离的乘积, 从而求得两对边的距离 解:在 RtAOB 中,AB13,OA5,OB12, 于是 SAOB1 2OA OB 1 251230, 所以 S菱形ABCD4SAOB430120. 又因为菱形两组对边的距离相等, 所以 S菱形ABCDABh13h, 所以 13h120,得

6、h120 13 . 方法总结:菱形的面积计算有如下方法:(1)一边长与两对边的距离(即菱形的高)的积;(2)四个 小直角三角形的面积之和(或一个小直角三角形面积的 4 倍);(3)两条对角线长度乘积的一半 三、板书设计 菱形 菱形的定义:有一组邻边相等的平行四边形叫 做菱形 菱形的性质 边:对边平行且四条边相等 角:对角相等,邻角互补 对角线:互相垂直平分,且每一条 对角线都平分一组对角 菱形的对称性:菱形是轴对称图形,每条对角线 所在的直线是它的对称轴 菱形的面积公式:S底高两条对角线长度 乘积的一半 为学生提供动手实践、研究探讨的时间与空间,让学生经历知识发生、发展的全过程,培养学生自 主

7、学习、合作学习、主动获取知识的能力,使学生经历实践、推理、交流等数学活动过程,亲身体 验数学思想方法及数学观念,培养学生能力,促进学生发展. 第第 2 课时课时 菱形的判定菱形的判定 1理解并掌握菱形的判定方法;(重点) 2灵活运用菱形的判定方法进行有关的证明和计算(难点) 一、情景导入 木工在做菱形的窗格时, 总是保证四条边框一样长, 你知道其中的道理吗?借助以下图形探索: 如图,在四边形 ABCD 中,ABBCCDDA,试说明四边形 ABCD 是菱形 二、合作探究 探究点一:对角线互相垂直的平行四边形是菱形 如图所示,ABCD 的对角线 BD 的垂直平分线与边 AB,CD 分别交于点 E,

8、F.求证:四 边形 DEBF 是菱形 解析:本题首先应用到平行四边形的性质,其次应用到菱形的判定方法要证四边形 DEBF 是 菱形,可以先证明其为平行四边形,再利用“对角线互相垂直”证明其为菱形 证明:四边形 ABCD 是平行四边形, ABDC. FDOEBO. 又EF 垂直平分 BD, OBOD. 在DOF 和BOE 中, FDOEBO, ODOB, FODEOB, DOFBOE(ASA) OFOE. 四边形 DEBF 是平行四边形 又EFBD, 四边形 DEBF 是菱形 方法总结:用此方法也可以说是对角线互相垂直平分的四边形是菱形,但对角线互相垂直的四 边形不一定是菱形,必须强调对角线是互

9、相垂直且平分的 探究点二:四边相等的四边形是菱形 如图所示,在ABC 中,B90 ,AB6cm,BC8cm.将ABC 沿射线 BC 方向平移 10cm,得到DEF,A,B,C 的对应点分别是 D,E,F,连接 AD.求证:四边形 ACFD 是菱形 解析: 根据平移的性质可得 CFAD10cm,DFAC, 再在 RtABC 中利用勾股定理求出 AC 的长为 10cm,就可以根据四边相等的四边形是菱形得到结论 证明:由平移变换的性质得 CFAD10cm,DFAC. B90 ,AB6cm,BC8cm, AC AB2BC2 628210(cm), ACDFADCF10cm, 四边形 ACFD 是菱形

10、方法总结:当四边形的条件中存在多个关于边的等量关系时,运用四条边都相等来判定一个四 边形是菱形比较方便 探究点三:菱形的判定和性质的综合应用 如图所示,在ABC 中,D、E 分别是 AB、AC 的中点,BE2DE,延长 DE 到点 F,使 得 EFBE,连接 CF. (1)求证:四边形 BCFE 是菱形; (2)若 CE4,BCF120 ,求菱形 BCFE 的面积 (1)证明:D、E 分别是 AB、AC 的中点, DEBC 且 2DEBC. 又BE2DE,EFBE, EFBC,EFBC, 四边形 BCFE 是平行四边形 又EFBE, 四边形 BCFE 是菱形; (2)解:BCF120 ,EBC

11、60 , EBC 是等边三角形, 菱形的边长为 4,高为 2 3, 菱形的面积为 42 38 3. 方法总结:判定一个四边形是菱形时,要结合条件灵活选择方法如果可以证明四条边相等, 可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以尝试证出这个四边形是平行 四边形,然后用定义法或判定定理 1 来证明菱形 三、板书设计 菱形的 判 定 有一组邻边相等的平行四边形是菱形(定义) 四边相等的四边形是菱形 对角线互相垂直的平行四边形是菱形 对角线互相垂直平分的四边形是菱形 经历菱形的证明、猜想的过程,进一步提高学生的推理论证能力,体会证明过程中所运用的归 纳概括 以及转化等数学方法在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及 逻辑思维能力.