ImageVerifierCode 换一换
格式:PPTX , 页数:24 ,大小:735.02KB ,
资源ID:147828      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-147828.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(人教A版高中数学必修第一册课件:5.2.1任意角的三角函数(第一课时)(共24张PPT))为本站会员(画**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

人教A版高中数学必修第一册课件:5.2.1任意角的三角函数(第一课时)(共24张PPT)

1、,任意角的三角函数,1.在初中我们是如何定义锐角三角函数的?,y,x,2.在直角坐标系中如何用坐标表示锐角三角函数?,y,x,2.在直角坐标系中如何用坐标表示锐角三角函数?,o,如果改变点在终边上的位置,这三个比值会改变吗?,M,O,y,x,P(a,b),1.锐角三角函数(在单位圆中),2.任意角的三角函数定义,设 是一个任意角,它的终边与单位圆交于点,那么:(1) 叫做 的正弦,记作 ,即 ;,(2) 叫做 的余弦,记作 ,即 ;,(3) 叫做 的正切,记作 ,即 。,所以,正弦,余弦,正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将他们称为三角函数.,使比值有意义

2、的角的集合 即为三角函数的定义域.,说 明,例1.求 的正弦、余弦和正切值.,的终边与单位圆的交点坐标为,所以,2. 特殊角的三角函数值,想一想,记一记,例2.已知角 的终边经过点 ,求角 的正弦、余弦和正切值 .,解:由已知可得,设角 的终边与单位圆交于 ,,分别过点 、 作 轴的垂线 、,于是,,设角 是一个任意角, 是终边上的任意一点, 点 与原点的距离 .,那么 叫做 的正弦,即, 叫做 的余弦,即, 叫做 的正弦,即,任意角 的三角函数值仅与 有关,而与点 在角的终边上的位置无关.,定义推广:,思考:,如果两个角的终边相同,那么这两个角的同一三角函数值有何关系?,利用公式一,可以把求

3、任意角的三角函数值,转化为 求 角的三角函数值 .,?,任意角的三角函数的定义过程:,于是,,练习: 1.已知角 的终边过点 , 求 的三个三角函数值.,解:由已知可得:,P15.2,R,R,口诀“一全正, 二正弦,三正切,四余弦.”,+,-,-,+,-,-,+,+,-,+,-,y,x,o,+,-,+,-,全为+,记法:,一全正,二正弦,三正切,四余弦,三个三角函数在各象限的符号,心得:角定象限,象限定符号.,P15.3,例题,例5. 求证:当下列不等式组成立时,角 为第三象限角.反之也对,证明:,因为式 成立,所以 角的终边可能位于第三 或第四象限,也可能位于y 轴的非正半轴上;,又因为式

4、成立,所以角 的终边可能位于第一或第三象限.,因为式都成立,所以角 的终边只能位于第三象限. 于是角 为第三象限角.,反过来请同学们自己证明.,P15.6,思考提升:已知 在第二象限, 试确定 sin(cos)cos(sin) 的符号.,解: 在第二象限,-1cos0, 0sin1.,sin(cos)0.,sin(cos)cos(sin)0.,故 sin(cos)cos(sin) 的符号为“ - ”号.,1. 内容总结:,三角函数的概念. 三角函数的定义域及三角函数值在各象限的符号. 诱导公式一.,运用了定义法、公式法、数形结合法解题.,划归的思想,数形结合的思想.,2 .方法总结:,3 .体现的数学思想:,