ImageVerifierCode 换一换
格式:DOCX , 页数:11 ,大小:413.55KB ,
资源ID:147591      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-147591.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020年中考数学复习之动态问题 专题01 动点问题中的最值、最短路径问题(解析版))为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2020年中考数学复习之动态问题 专题01 动点问题中的最值、最短路径问题(解析版)

1、 专题专题 01 动点问题中的最值、最短路径问题动点问题中的最值、最短路径问题 动点问题是初中数学阶段的难点,它贯穿于整个初中数学,自数轴起始,至几何图形的存在性、几何 图形的长度及面积的最值,函数的综合类题目,无不包含其中. 其中尤以几何图形的长度及面积的最值、最短路径问题的求解最为繁琐且灵活多变,而其中又有一些 技巧性很强的数学思想(转化思想) ,本专题以几个基本的知识点为经,以历年来中考真题为纬,由浅入深 探讨此类题目的求解技巧及方法. 一、基础知识点综述一、基础知识点综述 1. 两点之间,线段最短; 2. 垂线段最短; 3. 若 A、 B 是平面直角坐标系内两定点, P 是某直线上一动

2、点, 当 P、 A、 B 在一条直线上时,PAPB 最大,最大值为线段 AB 的长(如下图所示) ; 4. 最短路径模型 (1)单动点模型 作图方法:作已知点关于动点所在直线的对称点,连接成线段与动点所在直线的交点即为所求点的位 置. 如下图所示,P 是 x 轴上一动点,求 PA+PB 的最小值的作图. (2)双动点模型 x y A B l P P O x y A B P A P P 是AOB 内一点,M、N 分别是边 OA、OB 上动点,求作PMN 周长最小值. 作图方法:作已知点 P 关于动点所在直线 OA、OB 的对称点 P、P,连接 PP与动点所在直线的交 点 M、N 即为所求. 5.

3、 二次函数的最大(小)值 2 ya xhk,当 a0 时,y 有最小值 k;当 a0,Q 点在第四象限, 2 222 2 AMQMAMQM 所以只要构造出 2 2 AMQM 即可得到22AMQM的最小值 取 N(1,0) ,连接 AN,过 M 作 MGAN 于 G,连接 QM,如图所示, AGM 为等腰直角三角形, GM= 2 2 AM,即当 G、M、Q 三点共线时,GM+MQ 取最小值,即22AMQM取最小值, 此时MQH 为等腰直角三角形, QM=2QH= 3 2 24 b ,GM= 2 2 AM= 2 1 2 m 22333 2 222=212 22244 b AMQMAMQMm QH=

4、MH, 3 24 b = 1 2 bm,解得:m= 1 24 b 联立得:m= 7 4 ,b=4. 即当22AMQM的最小值为 33 2 4 时,b=4. 【点睛】此题需要利用等腰直角三角形将22AMQM转化为 2 2 2 AMQM ,进而根据两点 之间线段最短及等腰三角形性质求解. 例例 5. (2019舟山)如图,一副含 30 和 45 角的三角板ABC和EDF拼合在个平面上,边AC与EF 重合,12ACcm当点E从点A出发沿AC方向滑动时,点F同时从点C出发沿射线BC方向滑动当 点E从点A滑动到点C时,点D运动的路径长为 cm;连接BD,则ABD的面积最大值为 2 cm 【答案】24-1

5、2 236 224 312 6; 【解析】解:如图 1 所示,当 E 运动至 E,F 滑动到 F时, 图 1 过 D作 DGAC 于 G,DHBC 交 BC 延长线于点 H, 可得EDG=FDH,DE=DF, RtEDGRtFDH, DG=GH, D在ACH 的角平分线上, 即 C,D,D三点共线. 通过分析可知,当 DEAC 时,DD的长度最大,随后返回初始 D 点,如图 2 所示,D 点的运动路径 为 DDD,行走路线长度为 2DD; B C(F) D A(E) D E F H G 图 2 BAC=30,AC=12,DE=CD BC=4 3,CD=DE=6 2, 由图知:四边形 ECFD为

6、正方形,CD=EF=12, DD=CD-CD=12-6 2,D 点运动路程为 2DD=24-12 2; 图 3 如图 3 所示,当点 D 运动至 D时,ABD的面积最大,最大面积为: ABCAE DBD FE CF D SSSS 正方形 = 2 111 4 38 36 26 2126 26 24 36 2 222 =36 224 312 6 【点睛】准确利用全等、角平分线判定得到 D 点的运动轨迹是关键,利用三角函数及勾股定理求解, 计算较为繁琐,尤其是利用割补法求解三角形的面积时对学生计算能力要求较高,此题难度较大,新颖不 失难度. 例例 6. (2019巴中)如图,在菱形 ABCD 中,连

7、接 BD、AC 交于点 O,过点 O 作 OHBC 于点 H,以 O 为圆心,OH 为半径的半圆交 AC 于点 M. (1)求证:DC 是圆 O 的切线; (2)若 AC=4MC,且 AC=8,求图中阴影部分面积; (3)在(2)的前提下,P 是线段 BD 上的一动点,当 PD 为何值时,PH+PM 的值最小,并求出最小 B C(F) D A(E) E F D B C(F) D A(E) E F D 值. 【答案】见解析. 【解析】 (1)证明: 过点 O 作 ONCD 于 N, AC 是菱形 ABCD 的对角线, AC 平分BCD, OHBC,ONCD, OH=ON, 又 OH 为圆 O 的

8、半径, ON 为圆 O 的半径, 即 CD 是圆 O 的切线. (2)由题意知:OC=2MC=4,MC=OM=2, 即 OH=2, 在 RtOHC 中,OC=2OH, 可得:OCH=30,COH=60, 由勾股定理得:CH=2 3 = 2 2 3 3 OCHOMH SSS 阴影扇形 (3)作点 M 关于直线 BD 的对称点 M,连接 MH 交 BD 于点 P, A B C D H O M N 可知:PM=PM 即 PH+PM=PH+PM=HM,由两点之间线段最短,知此时 PH+PM 最小, OM=OM=OH,MOH=60, MMH=30=HCM, HM=HC=2 3 即 PH+PM 的最小值为2 3; 在 RtMPO 及 RtCOD 中, OP=OM tan30= 2 3 3 , OD=OC tan30= 4 3 3 , 即 PD=OP+OD=2 3. A B C D H O M P M