ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:409.50KB ,
资源ID:147573      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-147573.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020年中考数学复习之动态问题 专题09 动点类题目图形最值问题探究(原卷版))为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2020年中考数学复习之动态问题 专题09 动点类题目图形最值问题探究(原卷版)

1、 专题专题 09 动点类题目动点类题目图形图形最值问题探究最值问题探究 题型一:题型一:矩形中的相似求解矩形中的相似求解 例例 1.(2019绍兴)绍兴)如图,矩形 ABCD 中,AB=a,BC=b,点 M、N 分别在边 AB、CD 上,点 E、F 分 别在边 BC、AD 上,MN、EF 交于点 P. 记 k=MN:EF. (1)若 a:b 的值为 1,当 MNEF 时,求 k 的值. (2)若 a:b 的值为 2 1 ,求 k 的最大值和最小值. (3)若 k 的值为 3,当点 N 是矩形的顶点,MPE=60 ,MP=EF=3PE 时,求 a:b 的值. BC DA E M F N 题型二:

2、二次函数中几何图形最值求题型二:二次函数中几何图形最值求解解 例例 2.(2019衡阳)衡阳)如图,二次函数 yx2+bx+c 的图象与 x 轴交于点 A(1,0)和点 B(3,0) ,与 y 轴 交于点 N,以 AB 为边在 x 轴上方作正方形 ABCD,点 P 是 x 轴上一动点,连接 CP,过点 P 作 CP 的垂线与 y 轴交于点 E (1)求该抛物线的函数关系表达式; (2)当点 P 在线段 OB(点 P 不与 O、B 重合)上运动至何处时,线段 OE 的长有最大值?并求出这个最 大值; (3)在第四象限的抛物线上任取一点 M,连接 MN、MB请问: MBN 的面积是否存在最大值?若

3、存在, 求出此时点 M 的坐标;若不存在,请说明理由 题型三:二次函数中题型三:二次函数中面积面积最值最值的的求解求解 例例 3.(2019自贡)自贡)如图,已知直线 AB 与抛物线 2 :2C yaxxc相交于点 A(-1,0)和点 B(2,3)两 点. (1)求抛物线 C 函数表达式; (2)若点 M 是位于直线 AB 上方抛物线上的一动点,以 MA、MB 为相邻的两边作平行四边形 MANB,当平 行四边形 MANB 的面积最大时,求此时平行四边形 MANB 的面积 S 及点 M 的坐标; (3) 在抛物线 C 的对称轴上是否存在定点 F, 使抛物线 C 上任意一点 P 到点 F 的距离等

4、于到直线 4 17 y的 距离,若存在,求出定点 F 的坐标;若不存在,请说明理由. 题型四:反比例函数中面积最值的求解题型四:反比例函数中面积最值的求解 例例 4.(2018扬州一模)扬州一模)如图 1,反比例函数 y= k x (x0)的图象经过点 A(2 3,1) ,射线 AB 与反比例 函数图象交于另一点 B(1,a) ,射线 AC 与 y 轴交于点 C,BAC=75 ,ADy 轴,垂足为 D (1)求 k 的值; (2)求 tanDAC 的值及直线 AC 的解析式; (3)如图 2,M 是线段 AC 上方反比例函数图象上一动点,过 M 作直线 lx 轴,与 AC 相交于点 N,连接

5、CM,求 CMN 面积的最大值 图 1 图 2 题型五:反比例函数中面积最值的求解题型五:反比例函数中面积最值的求解 例例 5.(2019达州)达州)如图 1,已知抛物线 y=x2+bx+c 过点 A(1,0),B(3,0). (1)求抛物线的解析式及其顶点 C 的坐标; (2)设点 D 是 x 轴上一点,当 tan(CAO+CDO)=4 时,求点 D 的坐标; (3)如图 2,抛物线与 y 轴交于点 E,点 P 是该抛物线上位于第二象限的点,线段 PA 交 BE 于点 M,交 y 轴于点 N, BMP 和 EMN 的面积分别为 m、n,求 mn 的最大值. 题型六:二次函数中最值及最短路径题

6、型题型六:二次函数中最值及最短路径题型 例例 6.(2019绵阳)绵阳)在平面直角坐标系中,将二次函数 y=ax2(a0)的图象向右平移 1 个单位,再向下平 移 2个单位,得到如图所示的抛物线,该抛物线与 x 轴交于点 A、B(点 A在点 B 的左侧),OA=1,经过点 A 的一次函数 y=kx+b(k0)的图象与 y轴正半轴交于点 C,且与抛物线的另一个交点为 D, ABD 的面积 为 5 (1)求抛物线和一次函数的解析式; (2)抛物线上的动点 E 在一次函数的图象下方,求 ACE 面积的最大值,并求出此时点 E 的坐标; (3)若点 P为 x 轴上任意一点,在(2)的结论下,求 PE+ 3 5 PA 的最小值 例例 7.(2019潍坊)潍坊)如图,在平面直角坐标系 xoy 中,O 为坐标原点,点 A(4,0) ,点 B(0,4) ,ABO 的中线 AC 与 y 轴交于点 C,且M 经过 O,A,C 三点 (1)求圆心 M 的坐标; (2)若直线 AD 与M 相切于点 A,交 y 轴于点 D,求直线 AD 的函数表达式; (3)在过点 B 且以圆心 M 为顶点的抛物线上有一动点 P,过点 P 作 PEy 轴,交直线 AD 于点 E若以 PE 为半径的P 与直线 AD 相交于另一点 F当 EF45时,求点 P 的坐标