1、,导入新课,讲授新课,当堂练习,课堂小结,8 有理数的除法,第二章 有理数及其运算,1.认识有理数的除法,经历除法的运算过程. 2.理解除法法则,体验除法与乘法的转化关系. 3.掌握有理数的除法及乘除混合运算.(重点、难点),你能很快地说出下列各数的倒数吗?,-1,导入新课,复习引入,2(3)=_ ,(4)(3)=_,89=_,0(6)=_,(4)3 =_ ,(6) 2=_,12(4)=_,729=_,(12)(4)=_,0(6)=_,观察右侧算式, 两个有理数相除时:,商的符号如何确定?,商的绝对值如何确定?,6,12,72,12,0,3,3,8,0,3,计算:,讲授新课,(6) 2=_,1
2、2(4)=_,729=_,(12)(4)=_,0(6)=_,3,3,8,0,商的符号如何确定?,商的绝对值如何确定?,异号两数相除得负,并把绝对值相除,同号两数相除得正, 并把绝对值相除,零除以任何非零数得零,3,有理数的除法法则1,两个有理数相除, 同号得_, 异号得_,并把绝对值_. 0除以任何一个不等于0的数都得_.,正,负,相除,0,0不能作为除数,注意,(1)(15)(3);,例1.计算:,(3)(0.75)0.25.,(3)原式( 0.75 0.25 )3,解:(1)原式+(153)5,典例精析,(12)( )(100),下面两种计算正确吗?请说明理由:,(1)解:原式=(-12)
3、( 100) =(-12) =-14400,(2)解:原式=( )(-12)(-100) = (-100)=,除法不适合交换律与结合律,所以不正确,(),(),想一想,比较下列各组数计算结果:,15,除以一个数等于乘以这个数的倒数,做一做,(1)1( )与1( ),(2)0.8( )与0.8( ),(3)( )( )与( )(60 ),除以一个不等于0的数,等于乘这个数的倒数.,也可以表示成: a b = a (b0),有理数的除法法则2,对比记忆,有理数的减法法则,减去一个数,等于加这个数的相反数.,a - b = a + (-b),减数变为相反数作加数,减号变加号,有理数的除法法则,除以一
4、个不等于0的数,等于乘这个数的倒数.,a b = a (b0),例2 计算(1)(-36)9; (2) .,(2)原式=,典例精析,解:(1)原式= - (36 9)= - 4;,4,8,0,计算:,练一练,例3 计算 (1),解:(1)原式,(2),(2)原式,(1)有理数除法化为有理数乘法以后,可以利用有理数乘法的运算律简化运算,(2)乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果(乘除混合运算按从左到右的顺序进行计算),方法归纳,1.计算 的结果正确的是 ( ),当堂练习,2.算式 中的括号内应填上 ( ),C,D,3.填空:,(1)若 互为相反数,且 ,则 _, _;,(2)当 时, =_;,(3)若 则 的符号分别是_.,4.计算:规定一种新的运算:ABABAB,如4242426,则6(3)的值为 .,16,5.计算,解:,6.计算:,解:,两个有理数相除,同号得正,异号得负,并把绝对值相除.,法则一,法则二,除法 有理数,0除以任何非0的数都得0.,除以一个数等于乘这个数的倒数.,课堂小结,