ImageVerifierCode 换一换
格式:DOCX , 页数:28 ,大小:368.48KB ,
资源ID:144856      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-144856.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(江苏省扬州市邗江区梅苑双语学校2020年中考数学一模试卷(含答案解析))为本站会员(画**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

江苏省扬州市邗江区梅苑双语学校2020年中考数学一模试卷(含答案解析)

1、2020 年江苏省扬州市邗江区梅苑双语学校中考数学一模试卷年江苏省扬州市邗江区梅苑双语学校中考数学一模试卷 一选择题(共一选择题(共 8 小题)小题) 1下列各数中,2020 的倒数是( ) A B2020 C|2020| D 2下列计算结果正确的是( ) A6 B (ab2)3a3b6 Ctan45 D (x3)2x29 3如图是由 3 个大小相同的小正方体组成的几何体,它的左视图是( ) A B C D 4一组数据 2,1,2,5,3,4 的中位数和众数分别是( ) A2,2 B3,2 C2.5,2 D3.5,2 5如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于等于 3 的

2、数的概 率是( ) A B C D 6平行四边形的一边长为 6cm,则它的两条对角线长可以是( ) A4cm,6cm B5cm,6cm C4cm,8cm D2cm,12cm 7如图,在四边形 ABCD 中,BD 平分ABC,BADBDC90,E 为 BC 的中点, AE 与 BD 相交于点 F若 BC4,CBD30,则 BF 的长为( ) A B C D 8在平面直角坐标系 xOy 中,过点 A(5,0)作垂直于 x 轴的直线 AB,直线 yx+b 与 双曲线 y相交于点 P(x1,y1) 、Q(x2,y2) ,与直线 AB 相交于点 R(x3,y3) 若 y1y2y3时,则 b 的取值范围是

3、( ) Ab4 Bb4 或 b4 Cb4 或 b4 D4b或 b4 二填空题(共二填空题(共 10 小题)小题) 9一般冠状病毒衣原体的直径约为 0.000011cm,把 0.000011 用科学记数法可以表示 为 10因式分解:9x281 11某多边形内角和与外角和共 1080,则这个多边形的边数是 12使代数式有意义的 x 的取值范围是 13已知圆锥的底面圆的半径为 2cm,侧面展开图的圆心角为 60,则该圆锥的母线长为 cm 14关于 x 的方程 mx2+4x+10 有两个不相等的实数根,则 m 的取值范围是 15如图,AB 是O 的弦,OCAB连接 OA、OB、BC,若 BC 是O 的

4、内接正十二边形 的一边,则ABC 16某种商品每件进价为 20 元,调查表明:在某段时间内,若以每件 x 元(20x40,且 x 为整数) 出售, 可卖出 (40x) 件, 若要使利润最大, 则每件商品的售价应为 元 17如图,直线 yx2 与 x 轴交于点 A,以 OA 为斜边在 x 轴的上方作等腰直角三角形 OAB,将OAB 沿 x 轴向右平移,当点 B 落在直线 yx2 上时,则线段 AB 在平移过 程中扫过部分的图形面积为 18如图,A、B 两点的坐标分别为(4,0) , (0,4) ,C、F 分别是直线 x6 和 x 轴上的 动点, CF12, D是CF的中点, 连接AD交y轴与点E

5、, ABE面积的最小值为 cm 三解答题(共三解答题(共 10 小题)小题) 19计算或化简: (1)|24|() 1+2cos60; (2)已知 a 是方程 x2+2x10 的一个实数根,求代数式(a+3)24(a2)的值 20解不等式组:,并写出它的所有整数解 21某校组织学生参加“新冠肺炎”防疫知识竞赛,从中抽取了部分学生成绩进行统计,并 按照成绩从低到高分成 A,B,C,D,E 五个小组,绘制统计图如表(未完成) ,解答下 列问题: (1)样本容量为 ,频数分布直方图中 a ; (2) 扇形统计图中 E 小组所对应的扇形圆心角为 n, 求 n 的值并补全频数分布直方图; (3)若成绩在

6、 80 分以上(不含 80 分)为优秀,全校共有 3000 名学生,估计成绩优秀 的学生有多少名? 22五张正面分别写有数字:3,2,0,1,2 的卡片,它们的背面完全相同,现将这五 张卡片背面朝上洗匀 (1)从中任意抽取一张卡片,则所抽卡片上数字的绝对值不小于 1 的概率是 ; (2)先从中任意抽取一张卡片,以其正面数字作为 m 的值,然后再从剩余的卡片中随机 抽一张,以其正面的数字作为 n 的值,请用列表法或画树状图法,求点 Q(m,n)在第 四象限的概率 23某药店准备用 9000 元购进一批口罩,很快销售一空;药店又用 15000 元购进了第二批 该款口罩,购进时的单价是第一批的倍,所

7、购数量比第一批多 1000 只求第一批口罩 购进时的单价是多少? 24如图,E,F 是正方形 ABCD 的对角线 AC 上的两点,AECF,连接 DE、BE、BF、 DF (1)求证:四边形 BEDF 为菱形; (2)若菱形 BEDF 的边长为 2,AE2,求正方形 ABCD 的边长 25如图,AB 是O 的直径,AC 是O 的切线,切点为 A,BC 交O 于点 D,点 E 是 AC 的中点 (1)求证:直线 DE 是O 的切线; (2)若O 半径为 1,BC4,求图中阴影部分的面积 26在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的矩形的周长与面 积相等,则称这个点为“美好点

8、” ,如图,过点 P 分别作 x 轴,y 轴的垂线,与坐标轴围 成的矩形 OAPB 的周长与面积相等,则 P 为“美好点” (1)在点 M(2,2) ,N(4,4) ,Q(6,3)中,是“美好点”的有 (2)若“美好点”P(a,3)在直线 yx+b(b 为常数)上,求 a 和 b 的值; (3)若“美好点”P 恰好在抛物线 yx2第一象限的图象上,在 x 轴上是否存在一点 Q 使得POQ 为直角三角形?若存在,请求出点 Q 的坐标;若不存在,请说明理由 27 【探究证明】 (1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的 数量关系进行探究,提出下列问题,请你给出证明: 如图,

9、在矩形 ABCD 中,EFGH,EF 分别交 AD、BC 于点 E、F,GH 分别交 AB、 DC 于点 G、H,求证:; 【结论应用】 (2) 如图, 将矩形 ABCD 沿 EF 折叠, 使得点 B 和点 D 重合, 若 AB2, BC3求折痕 EF 的长; 【拓展运用】 (3) 如图, 将矩形 ABCD 沿 EF 折叠 使得点 D 落在 AB 边上的点 G 处, 点 C 落在点 P 处,得到四边形 EFPG,若 AB2,BC3,EF,请求 BP 的长 28如图 1,已知抛物线顶点 C(1,4) ,且与 y 轴交于点 D(0,3) (1)求该抛物线的解析式及其与 x 轴的交点 A、B 的坐标

10、; (2)将直线 AC 绕点 A 顺时针旋转 45后得到直线 AE,与抛物线的另一个交点为 E, 请求出点 E 的坐标; (3)如图 2,点 P 是该抛物线上位于第一象限的点,线段 AP 交 BD 于点 M、交 y 轴于 点 N,BMP 和DMN 的面积分别为 S1,S2,求 S1S2的最大值 参考答案与试题解析参考答案与试题解析 一选择题(共一选择题(共 8 小题)小题) 1下列各数中,2020 的倒数是( ) A B2020 C|2020| D 【分析】直接利用倒数的定义得出答案 【解答】解:2020 的倒数是: 故选:A 2下列计算结果正确的是( ) A6 B (ab2)3a3b6 Ct

11、an45 D (x3)2x29 【分析】各式计算得到结果,即可作出判断 【解答】解:A、原式6,不符合题意; B、原式a3b6,符合题意; C、原式1,不符合题意; D、原式x26x+9,不符合题意 故选:B 3如图是由 3 个大小相同的小正方体组成的几何体,它的左视图是( ) A B C D 【分析】 根据左视图就是从物体的左边进行观察, 得出左视图有 1 列, 小正方形数目为 2 【解答】解:如图所示:它的左视图是: 故选:D 4一组数据 2,1,2,5,3,4 的中位数和众数分别是( ) A2,2 B3,2 C2.5,2 D3.5,2 【分析】将数据从小到大排列,再根据中位数和众数的概念

12、求解可得 【解答】解:将数据重新排列为 1、2、2、3、4、5, 则这组数据的中位数为2.5,众数为 2, 故选:C 5如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于等于 3 的数的概 率是( ) A B C D 【分析】根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二 者的比值就是其发生的概率 【解答】解:共 6 个数,大于等于 3 的有 4 个, P(大于等于 3) 故选:B 6平行四边形的一边长为 6cm,则它的两条对角线长可以是( ) A4cm,6cm B5cm,6cm C4cm,8cm D2cm,12cm 【分析】根据平行四边形的性质,结合三角形三边关

13、系:三角形的第三边大于两边之差 小于两边之和即可判断 【解答】解:A、2+36,不能够成三角形,故此选项错误; B、2.5+36,不能够成三角形,故此选项错误; C、2+46,不能够成三角形,故此选项错误; D、1+66,能构成三角形,故此选项正确; 故选:D 7如图,在四边形 ABCD 中,BD 平分ABC,BADBDC90,E 为 BC 的中点, AE 与 BD 相交于点 F若 BC4,CBD30,则 BF 的长为( ) A B C D 【分析】先利用含 30 度角的直角三角形的性质求出 BD,再利用直角三角形的性质求出 DEBE2, 即: BDEABD, 进而判断出 DEAB, 再求出

14、AB3, 即可得出结论 【解答】解:如图, 在 RtBDC 中,BC4,DBC30, BD2, BDC90,点 E 是 BC 中点, DEBECEBC2, DCB30, BDEDBC30, BD 平分ABC, ABDDBC, ABDBDE, DEAB, DEFBAF, , 在 RtABD 中,ABD30,BD2, AB3, , , DFBD2, BFDF 故选:C 8在平面直角坐标系 xOy 中,过点 A(5,0)作垂直于 x 轴的直线 AB,直线 yx+b 与 双曲线 y相交于点 P(x1,y1) 、Q(x2,y2) ,与直线 AB 相交于点 R(x3,y3) 若 y1y2y3时,则 b 的

15、取值范围是( ) Ab4 Bb4 或 b4 Cb4 或 b4 D4b或 b4 【分析】先利用直线 yx+b 与双曲线 y有两个交点和判别式的意义得到 b4 或 b 4,讨论:当反比例函数图象与直线 yx+b 在第二象限相交于 P、Q 时,直线 AB 与 反比例函数 y相交于 C 点,如图,C(5,) ,利用点 R 在 C 点下方得到5+b ,此时 b 的范围为 4b,当反比例函数与直线 yx+b 在第一象限相交于 P、Q 时,b 的范围为 b4 满足 y1y2y3 【解答】解:直线 yx+b 与双曲线 y有两个交点, x+b有两个实数解, 整理得 x2+bx+40, b2440, b4 或 b

16、4, 当反比例函数图象与直线 yx+b 在第二象限相交于 P、Q 时,直线 AB 与反比例函数 y 相交于 C 点,如图, 当 x5 时,y,则 C(5,) , 当点 R 在 C 点下方时,y1y2y3,即 x5 时,y, 5+b,解得 b, b 的范围为 4b, 当反比例函数与直线 yx+b 在第一象限相交于 P、Q 时,b 的范围为 b4 满足 y1y2 y3, 综上所述,b 的范围为 4b或 b4 故选:D 二填空题(共二填空题(共 10 小题)小题) 9 一般冠状病毒衣原体的直径约为 0.000011cm, 把 0.000011 用科学记数法可以表示为 1.1 10 5 【分析】绝对值

17、小于 1 的正数也可以利用科学记数法表示,一般形式为 a10 n,与较大 数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零 的数字前面的 0 的个数所决定 【解答】解:0.0000111.110 5 故答案为:1.110 5 10因式分解:9x281 9(x+3) (x3) 【分析】先提公因式,然后根据平方差公式可以对原式进行因式分解 【解答】解:9x2819(x29)9(x+3) (x3) , 故答案为:9(x+3) (x3) 11某多边形内角和与外角和共 1080,则这个多边形的边数是 6 【分析】 先根据多边形的外角和为 360求出其内角和, 再根据多边形内角

18、和定理即可求 出多边形的边数 【解答】解:多边形内角和与外角和共 1080, 多边形内角和1080360720, 设多边形的边数是 n, (n2)180720,解得 n6 故答案为:6 12使代数式有意义的 x 的取值范围是 x3,且 x4 【分析】分式的分母不为零,二次根式的被开方数是非负数 【解答】解:根据题意,得 x30 且 x40, 解得,x3,且 x4; 故答案是:x3,且 x4 13已知圆锥的底面圆的半径为 2cm,侧面展开图的圆心角为 60,则该圆锥的母线长为 12 cm 【分析】设该圆锥的母线长为 lcm,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等 于圆锥底面的周长, 扇形

19、的半径等于圆锥的母线长和弧长公式得到22, 然后解关于 l 的方程即可 【解答】解:设该圆锥的母线长为 lcm, 根据题意得 22, 解得 l12, 即该圆锥的母线长为 12cm 故答案为 12 14关于 x 的方程 mx2+4x+10 有两个不相等的实数根,则 m 的取值范围是 m4 且 m 0 【分析】由关于 x 的一元二次方程 mx2+4x+10 有两个不相等的实数根,根据一元二次 方程的定义和根的判别式的意义可得 m0 且0,即 424m10,两个不等式的公 共解即为 m 的取值范围 【解答】解:关于 x 的一元二次方程 mx2+4x+10 有两个不相等的实数根, m0 且0,即 42

20、4m10, 解得 m4, m 的取值范围为 m4 且 m0 故答案为:m4 且 m0 15如图,AB 是O 的弦,OCAB连接 OA、OB、BC,若 BC 是O 的内接正十二边形 的一边,则ABC 15 【分析】根据已知条件得到BOC30,根据等腰三角形的性质得到AOC BOC30,由圆周角定理即可得到结论 【解答】解:BC 是O 的内接正十二边形的一边, BOC30, OAOB,OCAB, AOCBOC30, ABCAOC15, 故答案为:15 16某种商品每件进价为 20 元,调查表明:在某段时间内,若以每件 x 元(20x40,且 x 为整数) 出售, 可卖出 (40x) 件, 若要使利

21、润最大, 则每件商品的售价应为 30 元 【分析】设商品所获利润为 w 元,依题意得 w 关于 x 的二次函数,写成顶点式,按照二 次函数的性质可得出答案 【解答】解:设商品所获利润为 w 元,由题意得: w(x20) (40x) x2+60x800 (x30)2+100, 二次项系数10,20x40,且 x 为整数, 当 x30 时,w 取得最大值,最大值为 100 元 每件商品的售价应为 30 元 故答案为:30 17如图,直线 yx2 与 x 轴交于点 A,以 OA 为斜边在 x 轴的上方作等腰直角三角形 OAB,将OAB 沿 x 轴向右平移,当点 B 落在直线 yx2 上时,则线段 A

22、B 在平移过 程中扫过部分的图形面积为 12 【分析】根据等腰直角三角形的性质求得点 BC、OC 的长度,即点 B 的纵坐标,表示出 B的坐标,代入函数解析式,即可求出平移的距离,进而根据平行四边形的面积公式即 可求得 【解答】解:yx2, 当 y0 时,x20, 解得:x4, 即 OA4, 过 B 作 BCOA 于 C, OAB 是以 OA 为斜边的等腰直角三角形, BCOCAC2, 即 B 点的坐标是(2,2) , 设平移的距离为 a, 则 B 点的对称点 B的坐标为(a+2,2) , 代入 yx2 得:2(a+2)2, 解得:a6, 即OAB 平移的距离是 6, RtOAB 扫过的面积为

23、:6212, 故答案为:12 18如图,A、B 两点的坐标分别为(4,0) , (0,4) ,C、F 分别是直线 x6 和 x 轴上的 动点, CF12, D 是 CF 的中点, 连接 AD 交 y 轴与点 E, ABE 面积的最小值为 2 cm 【分析】设直线 x6 交 x 轴于 K由题意 KDCF6,推出点 D 的运动轨迹是以 K 为圆心,6 为半径的圆,推出当直线 AD 与K 相切时,ABE 的面积最小 【解答】解:如图,设直线 x6 交 x 轴于 K由题意 KDCF6, 点 D 的运动轨迹是以 K 为圆心,6 为半径的圆, 当直线 AD 与K 相切时,ABE 的面积最小, AD 是切线

24、,点 D 是切点, ADKD, AK10,DK6, AD8, tanEAO, , OE3, BE431, SABEBEOA2 故答案为 2 三解答题(共三解答题(共 10 小题)小题) 19计算或化简: (1)|24|() 1+2cos60; (2)已知 a 是方程 x2+2x10 的一个实数根,求代数式(a+3)24(a2)的值 【分析】 (1)根据绝对值的意义、负整数指数幂和特殊角的三角函数值进行计算; (2)利用 a 是方程 x2+2x10 的一个实数根得到 a2+2a1,再计算(a+3)24(a 2)得到 a2+2a+17,然后利用整体代入的方法计算代数式的值 【解答】解: (1)原式

25、3+243+2 3+243+1 6; (2)a 是方程 x2+2x10 的一个实数根, a2+2a10, a2+2a1, (a+3)24(a2)a2+6a+94a+8 a2+2a+17 1+17 18 20解不等式组:,并写出它的所有整数解 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中 间找、大大小小无解了确定不等式组的解集,继而可得答案 【解答】解:解不等式13(x+3)2x,得:x2, 解不等式 x1,得:x3, 则不等式组的解集为2x3, 所以不等式组的整数解为1、0、1、2、3 21某校组织学生参加“新冠肺炎”防疫知识竞赛,从中抽取了部分学生成绩进行统计

26、,并 按照成绩从低到高分成 A,B,C,D,E 五个小组,绘制统计图如表(未完成) ,解答下 列问题: (1)样本容量为 200 ,频数分布直方图中 a 16 ; (2) 扇形统计图中 E 小组所对应的扇形圆心角为 n, 求 n 的值并补全频数分布直方图; (3)若成绩在 80 分以上(不含 80 分)为优秀,全校共有 3000 名学生,估计成绩优秀 的学生有多少名? 【分析】 (1)根据 B 组的频数以及百分比,即可求得总人数,然后根据百分比的意义求 得 a 的值; (2)利用 360乘以 E 小组所占的百分比,求出 n 的值,用总人数乘以 C 组的人数所占 的百分比,从而补全统计图; (3

27、)利用全校总人数乘以对应的百分比,即可求解 【解答】解: (1)学生总数是 4020%200(人) , 则 a2008%16; 故答案为:200;16; (2)n36043.2 C 组的人数是:20025%50如图所示: (3)根据题意得: 30001410(名) 答:成绩优秀的学生有 1410 名 22五张正面分别写有数字:3,2,0,1,2 的卡片,它们的背面完全相同,现将这五 张卡片背面朝上洗匀 (1)从中任意抽取一张卡片,则所抽卡片上数字的绝对值不小于 1 的概率是 ; (2)先从中任意抽取一张卡片,以其正面数字作为 m 的值,然后再从剩余的卡片中随机 抽一张,以其正面的数字作为 n

28、的值,请用列表法或画树状图法,求点 Q(m,n)在第 四象限的概率 【分析】 (1)直接利用概率公式计算可得; (2)通过列表展示所有 20 种等可能情况,利用第四象限的点的坐标特点得到点 Q(m, n)在第四象限的结果数,然后根据概率公式求解 【解答】解: (1)从中任意抽取一张卡片,则所抽卡片上数字的绝对值不小于 1 的概率 为, 故答案为:; (2)列表如下: 3 2 0 1 2 3 (2, 3) (0,3) (1,3) (2,3) 2 (3, 2) (0,2) (1,2) (2,2) 0 (3,0) (2,0) (1,0) (2,0) 1 (3,1) (2,1) (0,1) (2,1)

29、 2 (3,2) (2,2) (0,2) (1,2) 共有 20 种等可能情况,其中在第四象限的点有 4 个, 所以点 Q(m,n)在第四象限的概率为 23某药店准备用 9000 元购进一批口罩,很快销售一空;药店又用 15000 元购进了第二批 该款口罩,购进时的单价是第一批的倍,所购数量比第一批多 1000 只求第一批口罩 购进时的单价是多少? 【分析】设第一批口罩购进时的单价是 x 元,则第二批口罩购进时的单价是x 元,根据 数量总价单价结合第二批比第一批多购进 1000 只,即可得出关于 x 的分式方程,解 之经检验后即可得出结论 【解答】解:设第一批口罩购进时的单价是 x 元,则第二

30、批口罩购进时的单价是x 元, 依题意,得:1000, 解得:x1, 经检验,x1 是原方程的解,且符合题意 答:第一批口罩购进时的单价是 1 元 24如图,E,F 是正方形 ABCD 的对角线 AC 上的两点,AECF,连接 DE、BE、BF、 DF (1)求证:四边形 BEDF 为菱形; (2)若菱形 BEDF 的边长为 2,AE2,求正方形 ABCD 的边长 【分析】 (1)连接 BD 交 AC 于点 O,则可证得 OEOF,ODOB,可证四边形 BEDF 为平行四边形,且 BDEF,可证得四边形 BEDF 为菱形; (2) 设 AOx, 则 OEx2, 在直角三角形 BEO 中利用勾股定

31、理可建立关于 x 的方程, 解方程求出 x 的值,进而可求出正方形 ABCD 的边长 【解答】解: (1)证明:连结 BD 交 AC 于点 O, 四边形 ABCD 为正方形, OAOBOCOD,ACBD, 又AECF, OEOF, 四边形 BEDF 为平行四边形, EF 垂直平分 BD, EBED, 四边形 BEDF 是菱形; (2)设 AOx,则 OEx2, 在 RtEOB 中,BE2BO2+OE2, 即 20x2+(x2)2, 解得:x4 或2(舍) , AO4, AB4 25如图,AB 是O 的直径,AC 是O 的切线,切点为 A,BC 交O 于点 D,点 E 是 AC 的中点 (1)求

32、证:直线 DE 是O 的切线; (2)若O 半径为 1,BC4,求图中阴影部分的面积 【分析】 (1)连接 OE、OD,根据切线的性质得到OAC90,根据三角形中位线定 理得到 OEBC,证明AOEDOE(SAS) ,根据全等三角形的性质、切线的判定定 理证明; (2)求出 AC,AE 的长,得出AOD120,根据扇形的面积公式计算即可 【解答】解: (1)证明:连接 OE、OD,如图, AC 是O 的切线, ABAC, OAC90, 点 E 是 AC 的中点,O 点为 AB 的中点, OEBC, 1B,23, OBOD, B3, 12, 在AOE 和DOE 中 , AOEDOE(SAS) O

33、DEOAE90, DEOD, OD 为O 的半径, DE 为O 的切线; (2)O 半径为 1, AB2, BAC90,BC4, C30,AC2, B60, AOD2B120, 又点 E 是 AC 的中点, AEAC, 图中阴影部分的面积2SAOES扇形AOD21 26在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的矩形的周长与面 积相等,则称这个点为“美好点” ,如图,过点 P 分别作 x 轴,y 轴的垂线,与坐标轴围 成的矩形 OAPB 的周长与面积相等,则 P 为“美好点” (1)在点 M(2,2) ,N(4,4) ,Q(6,3)中,是“美好点”的有 N、Q (2)若“美好

34、点”P(a,3)在直线 yx+b(b 为常数)上,求 a 和 b 的值; (3)若“美好点”P 恰好在抛物线 yx2第一象限的图象上,在 x 轴上是否存在一点 Q 使得POQ 为直角三角形?若存在,请求出点 Q 的坐标;若不存在,请说明理由 【分析】 (1)根据“美好点”的定义逐个验证即可; (2)对于 P 点,对应图形的周长为:2(|a|+3)2|a|+6,面积为 3|a|,因为点 P 是“美 好点” ,故 2|a|+63|a|,即可求解; (3)根据点 P 是“美好点”确定点 P 的坐标,再分 PQPO、PQOQ、POQO 三种 情况,分别求解即可 【解答】解: (1)对于 M 点,对应图

35、形的周长为:2(2+2)8,面积为 2248, 故点 M 不是“美好点” ; 对于点 N, 对应图形的周长为: 2 (4+4) 16, 面积为 4416, 故点 N 是 “美好点” ; 对于点 Q, 对应图形的周长为: 2 (6+3) 18, 面积为 6318, 故点 Q 是 “美好点” ; 故答案为:N、Q; (2)对于 P 点,对应图形的周长为 2(|a|+3)2|a|+6,面积为 3|a|, 点 P 是“美好点” , 2|a|+63|a|,解得:a6, 将点 P 的坐标代入直线的表达式得:3a+b,则 b3a, 故 b9 或 3, 故 s6,b9 或 a6,b3; (3)存在,理由: 设

36、点 P 的坐标为(m,n) ,nm2(m0,n0) , 由题意得:2m+2nmn,即 m+m2m3, 解得:m6 或4(舍去)或 0(舍去) , 故点 P 的坐标为(6,3) ; 设点 Q 的坐标为(x,0) , 则 PQ2(x6)2+32(x6)2+9, PO236+945, OQ2x2, 当 PQPO 时,则(x6)2+945,解得:x0(舍去)或 12; 当 PQOQ 时,同理可得:x; 当 POQO 时,同理可得:x3; 综上点 Q 的坐标为: (12,0)或(,0)或(3,0)或(3,0) 27 【探究证明】 (1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的 数量关

37、系进行探究,提出下列问题,请你给出证明: 如图,在矩形 ABCD 中,EFGH,EF 分别交 AD、BC 于点 E、F,GH 分别交 AB、 DC 于点 G、H,求证:; 【结论应用】 (2) 如图, 将矩形 ABCD 沿 EF 折叠, 使得点 B 和点 D 重合, 若 AB2, BC3求折痕 EF 的长; 【拓展运用】 (3) 如图, 将矩形 ABCD 沿 EF 折叠 使得点 D 落在 AB 边上的点 G 处, 点 C 落在点 P 处,得到四边形 EFPG,若 AB2,BC3,EF,请求 BP 的长 【分析】 (1)过点 A 作 APEF,交 CD 于 P,过点 B 作 BQGH,交 AD

38、于 Q,BQ 交 AP 于 T,如图 1,易证 APEF,GHBQ,ABPBCQ,然后运用相似三角形的性 质就可解决问题 (2)利用探究的结论解决问题即可 (3)如图中,过点 F 作 FHEG 于 H,过点 P 作 PJBF 于 J利用探究的结论求出 DG,利用勾股定理求出 AG,设 EDEGx,在 RtAEG 中,根据 EG2AE2+AG2,求 出 DE,EG,证明AEGJFP,推出,求出 FJ,PJ 即可解决问题 【解答】解: (1) :如图,过点 A 作 APEF,交 BC 于 P,过点 B 作 BQGH,交 CD 于 Q,BQ 交 AP 于 T 四边形 ABCD 是矩形, ABDC,A

39、DBC 四边形 AEFP、四边形 BGHQ 都是平行四边形, APEF,GHBQ 又GHEF, APBQ, BAT+ABT90 四边形 ABCD 是矩形, ABPC90,ADBC, ABT+CBQ90, BAPCBQ, ABPBCQ, , (2)如图中,连接 BD 四边形 ABCD 是矩形, C90,ABCD2, BD, D,B 关于 EF 对称, BDEF, , , EF (3)如图中,过点 F 作 FHEG 于 H,过点 P 作 PJBF 于 J 四边形 ABCD 是矩形, ABCD2,ADBC3,A90, , DG, AG1, 由翻折可知:EDEG,设 EDEGx, 在 RtAEG 中,

40、EG2AE2+AG2, x2AG2+AE2, x2(3x)2+1, x, DEEG, FHEG, FHGHGPGPF90, 四边形 HGPF 是矩形, FHPGCD2, EH, GHFPCFEGEH1, PFEG,EAFB, AEGIPF, AFJP90, AEGJFP, , , FJ,PJ, BJBCFJCF31, 在 RtBJP 中,BP 28如图 1,已知抛物线顶点 C(1,4) ,且与 y 轴交于点 D(0,3) (1)求该抛物线的解析式及其与 x 轴的交点 A、B 的坐标; (2)将直线 AC 绕点 A 顺时针旋转 45后得到直线 AE,与抛物线的另一个交点为 E, 请求出点 E 的

41、坐标; (3)如图 2,点 P 是该抛物线上位于第一象限的点,线段 AP 交 BD 于点 M、交 y 轴于 点 N,BMP 和DMN 的面积分别为 S1,S2,求 S1S2的最大值 【分析】 (1)设抛物线的表达式为:ya(xh)2+ka(x1)2+4,将点 D 的坐标代 入上式,即可求解; (2)构建ACH,用解直角三角形的方法求出点 H 的坐标,进而求解; (3)设 SSABM,则 S1S2(S1+S)(S+S2)SABPSBDO,即可求解 【解答】解: (1)设抛物线的表达式为:ya(xh)2+ka(x1)2+4, 将点 D 的坐标代入上式并解得:a1, 故抛物线的表达式为:y(x1)2

42、+4x2+2x+3; 令 y0,则 x1 或 3, 故点 A、B 的坐标分别为: (1,0) 、 (3,0) ; (2)如图,设函数的对称轴交 x 轴于点 G,交 AE 于点 H,过点 H 作 HNAC 于点 N, 在AGC 中,tanACGtanHCN, 在 RtCHN 中,设 HNx,则 CNHNtanHCN2x, 在 RtANH 中,NAH45,则 ANNHx, 故 ACAN+CN3x2,故 x, 在 RtCHN 中,CHx,故点 H(1,) , 由点 A、H 的坐标得,直线 AH 的表达式为:yx+, 联立并解得:x或1(舍去1) , 故点 E(,) ; (3)设点 P 的坐标为(x,y) ,yx2+2x+3, 设 SSABM, 则 S1S2 (S1+S) (S+S2) SABPSBDOAByOBOD4y 332x2+4x+, 20,故 S1S2有最大值, 当 x1 时,其最大值为; 故 S1S2的最大值为