ImageVerifierCode 换一换
格式:DOCX , 页数:10 ,大小:108.82KB ,
资源ID:141124      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-141124.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(高斯小学奥数六年级上册含答案第22讲 分数、百分数应用题综合提高)为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

高斯小学奥数六年级上册含答案第22讲 分数、百分数应用题综合提高

1、第二十二 分数、百分数应用题综合提高 一、 基础知识回顾: 1. 比: (1)比的概念:两个数相除叫做两个数的比比例如,56 可记作 5:6 “:”是 比号,比号前面的数叫做比的前项前项,比号后面的数叫做比的后项后项,前项除以后项所 得的商叫做比值比值比的后项不能为 0 (2)比的性质:比的前项和后项都乘以或除以一个不为零的数,比值不变 2. 比例基本性质: 如果:a bc d,那么adbc 3. 正比例关系和反比例关系: (1)正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种 量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量成正比例的量,它们 的关系叫做成

2、正比例关系成正比例关系,或者简写为“成正比” (2)反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相 对应的两个数的乘积一定,这两种量就叫做成成反反比例的量比例的量,它们的关系叫做成成反反 比例关系比例关系,或者简写为“成反比” 注意,正比例和反比例是两种“量”之间的关系比如长度、面积、时间、价 格、重量这些都是生活中实际存在的“量” 而以前我们学习的比和比例则是 针对具体的“数”之间的关系两个量之间如果成正比例关系成正比例关系或成反比例关系成反比例关系,称 为这两个量成比例成比例 二、 分数、百分数应用题相关的题目类型及解题方法: 1. 比例互化: (1)部分占部分,部

3、分占整体之间的转化; (2)多组比化连比 2. 通过寻找不变量解题:常用不变量有: (1)总量(和)不变:给来给去的情况; (2)差不变:同增、同减的情况; (3)其中某一个量没有变化 3. 正反比例的概念和应用 4. 复合比 5. 方程法 6. 倒推法 7. 列表法 例1 甲、乙两个人分别有许多苹果,如果甲买了 5 个苹果,则此时甲、乙两人的苹果数之 比是 7:8;如果甲买了 9 个苹果,乙丢了 4 个苹果,此时甲乙两人的苹果数之比是 3:2, 那么两人原来分别有多少个苹果? 分析分析本题可以利用“和不变”解题 练习 1、小高、小思两个人分别有许多积分,如果小高又得了 3 分,则此时两人的积

4、分 之比是 2:3;如果小高又得了 8 分,小思丢了 5 分,此时两人的积分之比是 3:4,那么 两人原来分别有多少积分? 例2 甲乙两个班的同学人数相等,且各有一些同学参加了课外数学小组的活动其中甲班 参加的人数是乙班参加人数的乙班未参加人数是甲班未参加人数的请问:甲 班未参加人数是乙班参加人数的几分之几? 分析分析因为两班总人数相同可以采用设数法,设出这个总数后,就可以表示出所需的 其它数量了 练习 2、甲、乙两人有相同数目的水果,水果有梨和苹果两种,甲的梨和乙的苹果数目 之比为 4:3,甲的苹果和乙的梨数目之比为 6:7,那么甲的苹果数和乙的苹果数之比是 多少? 例3 有三个最简真分数,

5、其分子的比为 3:2:4,分母的比为 5:9:15将这三个分数相加,再 经过约分后为那么三个分数的分母相加是多少? 分析分析可以采用设未知数的办法解答此题 2 5 1 5 28 45 练习 3、有三个真分数(其中第一个是最简真分数),其分子的比为 3:4:5,分母的比为 4:9:18将这三个分数相加,再经过约分后为那么三个分数的分母相加是多少? 例4 某工厂有 A,B,C,D,E 五个车间,人数各不相等由于工作需要,把 B 车间工人 的调入 A 车间,C 车间工人的调入 B 车间,D 车间工人的调入 C 车间,E 车间 工人的调入 D 车间现在五个车间都是 30 人原来每个车间各有多少人? 分

6、析分析本题可以采用“倒推法” 练习 4、五指山上有甲,乙,丙,丁四队妖怪,妖怪数各不相等为了均衡势力,把乙 队妖怪的调入甲队,丙队的调入乙队,丁队的调入丙队现在四支队伍都是 48 人原来每个队伍各有多少妖怪? 例5 小光、小明和小亮分一些苹果他们发现,苹果可以恰好按照 4:3:2 分配(按照小光、 小明、小亮的顺序,下同) ,也可以恰好按照 5:4:n 分配(其中 n 为自然数) ,两种分配 方法下,小光所分得的苹果数相差 20 个那么苹果总数的最大值是多少? 分析分析本题中哪些量是没有发生变化的呢? 例6 甲、乙、丙三人玩赢卡片的游戏,他们手中一共有 156 张卡片第一轮,甲赢了乙、 丙每人

7、手中卡片的 1 5 ; 第二轮, 乙赢了甲、 丙每人上轮结束时手中卡片的, 最后一轮, 丙赢了甲、乙每人上轮结束时手中卡片的,最后甲、乙手中的卡片数之比是 2:3,那 么结束时丙手中有多少张卡片? 分析分析本题可以采用寻找“不变量”作为解题突破口 1 4 1 4 1 7 1 5 1 3 1 6 1 4 1 3 1 2 53 72 数学泰斗阿基米德 阿基米德(约前 287 年前 212 年)是伟大的古希腊哲学家、数学家、物理学家、 力学家, 静力学和流体静力学的奠基人 他出生于西西里岛的叙拉古, 从小就善于思考, 喜欢辩论早年游历过埃及,曾在亚历山大城学习据说他住在亚历山大里亚时期发明 了阿基米

8、德式螺旋抽水机,今天在埃及仍旧使用着第二次布匿战争时期,罗马大军围 攻叙拉古,最后阿基米德不幸死在罗马士兵之手他一生献身科学,忠于祖国,受到人 们的尊敬和赞扬 阿基米德出生在古希腊西西里岛东南端的叙拉古城 在当时古希腊的辉煌文化已经 逐渐衰退,经济、文化中心逐渐转移到埃及的亚历山大城;但是另一方面,意大利半岛 上新兴的罗马帝国,也正不断的扩张势力;北非也有新的国家迦太基兴起阿基米德就 是生长在这种新旧势力交替的时代,而叙拉古城也就成为许多势力的角力场所 阿基米德的父亲是天文学家和数学家, 所以阿基米德从小受家庭影响, 十分喜爱数 学大概在他九岁时,父亲送他到埃及的亚历山大城念书亚历山大城是当时

9、世界的知 识、文化中心,学者云集,举凡文学、数学、天文学、医学的研究都很发达,阿基米德 在这里跟随许多著名的数学家学习, 包括有名的几何学大师欧几里得, 在此奠定了他 日后从事科学研究的基础 在数学方面,阿基米德确定了抛物线弓形、螺线、圆形的面积以及椭球体、抛物面 体等各种复杂几何体的表面积和体积的计算方法 在推演这些公式的过程中, 他创立了 “穷竭法” ,即我们今天所说的逐步近似求极限的方法,因而被公认为微积分计算的鼻 祖他用圆内接多边形与外切多边形边数增多、面积逐渐接近的方法,比较精确的求出 了圆周率面对古希腊繁冗的数字表示方式,阿基米德还首创了记大数的方法,突破了 当时用希腊字母计数不能

10、超过一万的局限,并用它解决了许多数学难题 浮力原理的发现 关于浮力原理的发现, 有这样一个故事: 相传叙拉古赫农王让工匠替他做了一顶纯 金的王冠但是在做好后,国王疑心工匠,但这顶金冠确与当初交给金匠的纯金一样 重工匠到底有没有私吞黄金呢?既想检验真假,又不能破坏王冠,这个问题不仅难倒 了国王,也使诸大臣们面面相觑经一大臣建议,国王请来阿基米德检验最初,阿基 米德也是冥思苦想而却无计可施一天,他在家洗澡,当他坐进澡盆里时,看到水往外 溢,同时感到身体被轻轻托起他突然悟到可以用测定固体在水中排水量的办法,来确 定金冠的比重他兴奋地跳出澡盆,连衣服都顾不得穿上就跑了出去,大声喊着“尤里 卡!尤里卡!

11、 ”(Eureka,意思是“我知道了”) 他经过了进一步的实验以后, 便来到了王宫, 他把王冠和同等重量的纯金放在盛满 水的两个盆里,比较两盆溢出来的水,发现放王冠的盆里溢出来的水比另一盆多这就 说明王冠的体积比相同重量的纯金的体积大, 密度不相同, 所以证明了王冠里掺进了其 他金属 这次试验的意义远远大过查出金匠欺骗国王的事实, 阿基米德从中发现了浮力定律 (阿基米德原理) :物体在液体中所获得的浮力,等于它所排出液体的重量一直到现 代,人们还在利用这个原理计算物体比重和测定船舶载重量等 给我一个支点,我可以撬动地球 阿基米德对于机械的研究源自于他在亚历山大城求学时期有一天阿基米德在久 旱的

12、尼罗河边散步, 看到农民提水浇地相当费力, 经过思考之后他发明了一种利用螺旋 作用在水管里旋转而把水吸上来的工具,后世的人叫它做“阿基米德螺旋提水器” ,埃 及一直到二千年后的现在,还有人使用这种器械这个工具成了后来螺旋推进器的先 祖当时的欧洲,在工程和日常生活中,经常使用一些简单机械,譬如:螺丝、滑车、 杠杆、 齿轮等, 阿基米德花了许多时间去研究, 发现了 “杠杆原理” 和 “力矩” 的观念, 对于经常使用工具制作机械的阿基米德而言,将理论运用到实际的生活上是轻而易举 的他自己曾说: “给我一个支点和一根足够长的杠杆,我就能撬动整个地球 ” 后世的评价 美国的 E.T.贝尔在数学大师上是这

13、样评价阿基米德的:任何一张开列有史以 来三个最伟大的数学家的名单之中, 必定会包括阿基米德, 而另外两们通常是牛顿和高 斯 不过以他们的宏伟业绩和所处的时代背景来比较, 或拿他们影响当代和后世的深邃 久远来比较,还应首推阿基米德 作业 1 甲、乙、丙、丁四人合做一批零件,甲做的个数是另外 3 个人所做的总数的一半,乙做 的个数是另外 3 个人所做的总数的,丙做的个数是另外 3 个人所做的总数的,丁 做了 390 个那么四个人共做了多少个零件? 2 甲、乙两个人分别有许多包子,如果甲买了 4 个包子,则此时甲乙两人的包子数之比是 2:3;如果甲买了 9 个包子,乙吃了 5 个包子,此时甲乙两人的

14、包子数之比是 5:7,那么 两人原来分别有多少个包子? 3 萱萱手上有语、数、英三种高思积分卡,分值的总和是 590,英语积分卡的分值和是数 学的,也是语文的萱萱手头的语文高思积分卡的分值是多少? 4 三班原计划抽 20%的人参加大扫除,临时又有两人主动参加,使实际参加打扫除的人 数是余下人数的,原计划抽出多少人大扫除? 5 甲乙两个班的同学人数相等, 且各有一些同学参加了课外数学小组的活动 其中甲班未 参加的人数是乙班未参加人数的 2 倍乙班参加人数是甲班参加人数的请问:甲 班未参加人数是乙班参加人数的几分之几? 5 4 1 3 3 4 5 8 1 5 1 3 第二十二 分数、百分数应用题综

15、合提高 例7 答案:答案:9、16 详解详解:答案 甲原有 9 个,乙原有 16 个 前后两种情况下甲乙两人的苹果总数不变,则可把前后苹果的总份数统一为 15 份,那 么两种情况下甲和乙的苹果数之比分别为 7:8、9:6,由题意可知一份对应了 2 个苹果, 所以甲原有个苹果,乙原有 16 个苹果 例8 答案 :四分之三 详解:设份数,按下面转化,可以得出最后甲乙均为 23 分的总人数,所以,甲班未参 加人数是乙班参加人数的四分之三 例9 答案:203 详解: 设三个分数为、(其中 a 与 b 互质) , 则三个分数之和为, 所以 a 和 b 的值分别为 4 和 7因此三个分数的分母相加是 例1

16、0 答案: A,B,C,D,E 五个车间分别有 11、38、33、32、36 人 详 解 : 设 A , B , C , D , E 五 个 车 间 分 别 有 a 、 b 、 c 、 d 、 e 个 人 , 则 ,所以 A,B,C,D,E 五个车间分 别有 11、38、33、32、36 人 53121111 30 64634232 edecdbcba=+=+=+=+ (59 15) 7203 4928 4545 a b 4 15 a b 2 9 a b 3 5 a b 参 未 参 未 甲 2 5 8 15 乙 5 1 20 3 和同 2759 例11 答案:1980 详解:小光第一次占总数的

17、,第二次占总数的,通过枚举可知当 时 45 和的差最小,即两种情况小光的苹果数所占总数的比例最接近,所以苹果 总数的最大值是 1980 例12 答案:66 详解:可设最后甲、乙的卡片数分别为 18x 和 27x,通过倒退,可得下表: 由上表最左列可知 x 的值只可以取 2,则结束时丙手中有 66 张卡片 第 1 轮 第 2 轮 第 3 轮 甲:40x39 32x 24x 18x 乙:60x65 48x52 36x 27x 丙:260100x 20880x 15660x 15645x 364n 2n 45 9(9)n 364 9(9) n n 练习 1、 答案:小高 67 分,小思 105 分

18、简答:根据“和不变” ,统一单位 1 解题即可 练习 2、答案 2:1 简答:甲的梨:乙的苹果=4:3,甲的苹果:乙的梨=6:7,设甲共 10 份的水果,则乙也 是 10 份的水果,发现单位 1 相同,不需进行比例计算,甲的苹果:乙的苹果=6:3=2:1 练习 3、答案 62 简答:设三个分数为、(其中 a 与 b 互质) ,则三个分数之和为 ,所以 a 和 b 的值分别为 1 和 2因此三个分数的分母相加 是 练习 4、答案:甲,乙,丙,丁四队各有 29、57、50、56 个妖怪 简答:同例 4,用倒推法 (49 18)262 2716105353 363672 aaaa bb 5 18 a

19、 b 4 9 a b 3 4 a b 作业 6 答案:答案:1560 简答简答:已知条件即告诉大家甲、乙、丙做的零件个数分别占总个数的、,则丁 完成的个数占总个数的,所以总个数为 7 答案:答案:甲有 116 个,乙有 180 个 简答简答:由已知条件发现,前后两种情况下包子的总量不变,所以可以把前后两个比的化 为相同份数来分析,即化为 24:36 和 25:35,由于乙在两种情况下相差 5 个包子,所以一 份对应 5 个包子,因此可求出甲原来有 116 个,乙原来有 180 个 8 答案:答案:200 简答简答:以英语积分作为前后两个比的桥梁,和可分别化为和,此时一共分为 了 59 份,而总积分为 590,所以一份对应 10 分,因此语文积分有 200 分 9 答案:答案:8 简答简答:两人加入后,打扫卫生的人数占总人数的 25%,即与原来相差总数的 5%,所以原 来有人 10 答案:答案:五分之二 简答简答:直接例 2 的方式写出比例后,发现甲乙之和相等,不需统一单位 1,直接可以看 出甲班未参加人数是乙班参加人数的五分之二 248 15 20 15 24 5 4 5 8 1 3901560 4 1111 3464 1 1 6 1 4 1 3