ImageVerifierCode 换一换
格式:DOCX , 页数:24 ,大小:317.80KB ,
资源ID:138381      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-138381.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020年4月广东省东莞市高考数学模拟试卷(理科)含答案解析)为本站会员(h****3)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2020年4月广东省东莞市高考数学模拟试卷(理科)含答案解析

1、2020 年年 4 月广东省东莞市高考数学模拟试卷(理科)月广东省东莞市高考数学模拟试卷(理科) 一、选择题:本大题共一、选择题:本大题共 12 小题,每小题小题,每小题 5 分,共分,共 60 分,在每小题给出的四个选项中,只分,在每小题给出的四个选项中,只 有一项是符合题目要求的有一项是符合题目要求的.请把正确选项在答题卡中的相应位置涂黑请把正确选项在答题卡中的相应位置涂黑. 1已知集合 Ax|x2+2x30,Bx|2x10,则 AB( ) A(3, 1 2) B (3,1) C(1 2,1) D(1 2,3) 2设复数 z 满足 iz1+i,则复数 z 的共轭复数在复平面内对应的点位于(

2、 ) A第一象限 B第二象限 C第三象限 D第四象限 3玫瑰花窗(如图)是哥特式建筑的特色之一,镶嵌着彩色玻璃的玫瑰花窗给人以瑰丽之 感构成花窗的图案有三叶形、四叶形、五叶形、六叶形和八叶形等右图是四个半圆 构成的四叶形,半圆的连接点构成正方形 ABCD,在整个图形中随机取一点,此点取自 正方形区域的概率为( ) A 2 :2 B 1 :1 C 4 :2 D 2 :1 4 已知定义在 R 上的奇函数 f (x) , 当 x0 时, f (x) log2x, 且 f (m) 2, 则 m ( ) A1 4 B4 C4 或1 4 D4 或 1 4 5已知平面向量 、 的夹角为 135,且 为单位向

3、量, = (1,1),则| + | =( ) 来源:学科网 ZXXK A5 B3 + 2 C1 D3 2 6已知 F1、F2分别为椭圆 C: 2 2 + 2 2 = 1(0)的左、右焦点,过 F1且垂直于 x 轴 的直线 l 交椭圆 C 于 A,B 两点,若AF2B 是边长为 4 的等边三角形,则椭圆 C 的方程 为( ) A 2 4 + 2 3 = 1 B 2 9 + 2 6 = 1 C 2 16 + 2 4 = 1 D 2 16 + 2 9 = 1 7定义运算 a*b 为执行如图所示的程序框图输出的 S 值,则(cos 12)*(sin 12)( ) A 3 2 B 3 2 C1 D1 8

4、 尘劫记中记载了这样一个问题:第 1 个月,有一对老鼠生了 6 对小老鼠,两代老鼠加 起来共有 7 对; 第 2 个月, 每对老鼠各生了 6 对小老鼠, 三代老鼠共有 49 对 由此类推, 父母、子女、孙子、曾孙辈的大小老鼠们,每个月每对老鼠都会生 6 对第 6 个月,共 有( )对老鼠 A66 B76 C6(6 6;1) 5 D7(7 6;1) 6 9为加强学生音乐素养的培育,东莞市某高中举行“校园十大歌手”比赛,比赛现场有 7 名评委给选手评分,另外,学校也提前发起了网络评分,学生们可以在网络上给选手评 分,场内数百名学生均参与网络评分某选手参加比赛后,现场评委的评分表和该选手 网络得分的

5、条形图如图所示: 评委序号 评分 10 8 9 8 9 10 9 记现场评委评分的平均分为1,网络评分的平均分为2,所有评委与场内学生评分的平 均数为,那么下列选项正确的是( ) A 1+2 2 B = 1+2 2 C 1+2 2 D与1:2 2 关系不确定 10已知函数() = ( + )(0, 2 2)的最小正周期为 ,将 f(x)的图象 向左平移 3个单位后,所得图象关于原点对称,则函数 f(x)的图象( ) A关于直线 = 2对称 B关于直线 = 3对称 C关于点( 2,0)对称 D关于点( 3,0)对称 11已知双曲线 C: 2 2 2 2 = 1(0,0)的一条渐近线被圆(xc)2

6、+y22a2截得的 弦长为 2b(其中 c 为双曲线的半焦距) ,则双曲线 C 的离心率为( ) A 2 2 B2 C3 D2 12 在棱长为 1 的正方体 ABCDA1B1C1D1中, E、 F 分别为 AB 和 DD1的中点, 经过点 B1, E,F 的平面 交 AD 于 G,则 AG( ) A1 3 B1 4 C3 4 D2 3 二、填空题:本大题共二、填空题:本大题共 4 小题,每小题小题,每小题 5 分,共分,共 20 分分.请把答案填在答题卡的相应位置上请把答案填在答题卡的相应位置上. 13各项均为正数的等比数列an中,2a2,a4,3a3成等差数列,则2:5 4:7 = 14已知

7、(1+ax) (1+x)4的展开式中 x2的系数为 18,则 a 15已知三棱锥 PABC 中,PA平面 ABC,PABC2,BAC= 3,则三棱锥 PABC 的外接球的表面积为 16已知() = +( 2) 2在 x(0,1)上恰有一个零点,则正实数 a 的取值范围 为 三、解答题:本大题共三、解答题:本大题共 5 小题,共小题,共 70 分分.解答应写出文字说明、证明过程或演算步骤解答应写出文字说明、证明过程或演算步骤.第第 17 至至 21 题为必考题,每个试题考生都必须作答,第题为必考题,每个试题考生都必须作答,第 22、23 题为选考题,考生根据要求作答题为选考题,考生根据要求作答.

8、 (一)必考题:本大题共(一)必考题:本大题共 5 小题,每小题小题,每小题 12 分,共分,共 60 分分. 17ABC 的内角 A,B,C 的对边分别为 a,b,c,若 = 3 3 (1)求 A; (2)若 b4,c2,AM 为 BC 边上的中线,求 AM 的长 18如图,在四棱锥 PABCD 中,底面 ABCD 为直角梯形,其中 ABBC,ADBC,AD 4,APABBC2,E 是 AD 的中点,AC 和 BE 交于点 O,且 PO平面 ABCD (1)证明:平面 PAC平面 PCD; (2)求直线 AB 与平面 PCD 所成角的大小 19已知抛物线 E:y24x,过抛物线焦点 F 的直

9、线 1 分别交抛物线 E 和圆 F: (x1)2+y2 1 于点 A、C、D、B(自上而下) (1)求证:|AC|BD|为定值; (2)若|AC|、|CD|、|DB|成等差数列,求直线 l 的方程 20已知函数 f(x)ex+3ax (1)讨论函数 f(x)的单调性: (2)若函数 f(x)在区间1,+)上的最小值为 0,求 a 的值 21在党中央的正确领导下,通过全国人民的齐心协力,特别是全体一线医护人员的奋力救 治,二月份“新冠肺炎”疫情得到了控制甲、乙两个地区采取防护措施后,统计了从 2 月 7 日到 2 月 13 日一周的新增“新冠肺炎”确诊人数,绘制成如图折线图: (1)根据图中甲、

10、乙两个地区折线图的信息,写出你认为最重要的两个统计结论; (2)治疗“新冠肺炎”药品的研发成了当务之急,某药企计划对甲地区的 A 项目或乙地 区的 B 项目投入研发资金,经过评估,对于 A 项目,每投资十万元,一年后利润是 l.38 万元、1.18 万元、l.14 万元的概率分别为1 6、 1 2、 1 3;对于 B 项目,利润与产品价格的调整 有关,已知 B项目产品价格在一年内进行 2 次独立的调整,每次价格调整中,产品价 格下调的概率都是 p(0p1) ,记 B 项目一年内产品价格的下调次数为 ,每投资十万 元, 取 0、1、2 时,一年后相应利润是 1.4 万元、1.25 万元、0.6

11、万元记对 A 项目投 资十万元,一年后利润的随机变量为 1,记对 B 项目投资十万元,一年后利润的随机变 量为 2 (i)求 1,2的概率分布列和数学期望 E1,E2; (ii)如果你是投资决策者,将做出怎样的决策?请写出决策理由 (二)选(二)选考题:共考题:共 10 分,请考生在第分,请考生在第 22,23 题中任选一题作答,如果多做,则按所做的题中任选一题作答,如果多做,则按所做的 第一题计分,作答时请写清题号第一题计分,作答时请写清题号.选修选修 4-4:坐标系与参数方程:坐标系与参数方程 22在平面直角坐标系 xOy 中,直线 l 的参数方程为 = = 3 + 3 (为参数) ,以坐

12、标原点为 极点,x 轴的正半轴为极轴建立极坐标系,曲线 C 的极坐标方程为 2asin(a0) , 已知直线 l 与曲线 C 有且仅有一个公共点 (l)求 a; (2)A,B 为曲线 C 上的两点,且AOB= 2,求|OA|+|OB|的最大值 选修选修 4-5:不等式选讲:不等式选讲 23设函数 f(x)|3x+1|+|3xa|,xR (1)当 a1 时,求不等式 f(x)9 的解集; (2)对任意 xR,恒有 f(x)2a1,求实数 a 的取值范围 一、选择题:本大题共一、选择题:本大题共 12 小题,每小题小题,每小题 5 分,共分,共 60 分,在每小题给出的四个选项中,只分,在每小题给

13、出的四个选项中,只 有一项是符合题目要求的有一项是符合题目要求的.请把正确选项在答题卡中的相应位置涂黑请把正确选项在答题卡中的相应位置涂黑. 1已知集合 Ax|x2+2x30,Bx|2x10,则 AB( ) A(3, 1 2) B (3,1) C(1 2,1) D(1 2,3) 可以求出集合 A,B,然后进行交集的运算即可 = *| 31+, = *| 1 2+, = (1 2,1) 故选:C 本题考查了一元二次不等式的解法,描述法、区间的定义,交集的运算,考查了计算能 力,属于基础题 2设复数 z 满足 iz1+i,则复数 z 的共轭复数在复平面内对应的点位于( ) A第一象限 B第二象限

14、C第三象限 D第四象限 把已知等式变形,再由复数代数形式的乘除运算化简,求出的坐标得答案 由 iz1+i,得 z= 1+ = (1+)() 2 = 1 , = 1 + , 则复数 z 的共轭复数在复平面内对应的点的坐标为(1,1) ,位于第一象限 故选:A 本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题 3玫瑰花窗(如图)是哥特式建筑的特色之一,镶嵌着彩色玻璃的玫瑰花窗给人以瑰丽之 感构成花窗的图案有三叶形、四叶形、五叶形、六叶形和八叶形等右图是四个半圆 构成的四叶形,半圆的连接点构成正方形 ABCD,在整个图形中随机取一点,此点取自 正方形区域的概率为( ) A

15、2 :2 B 1 :1 C 4 :2 D 2 :1 首先这是一个几何概型,整个图形内部的每个点对应一个基本事件只需要算出整个图 形面积即两个圆与正方形的面积和用正方形面积除以总面积即可 由题意可知,整个图形内部的每个点对应一个基本事件,所以这是一个几何概型 设此点取自正方形区域为事件 A 设正方形的边长为 2r,则圆的半径为 rS()2r2+(2r)22r2+4r2 正方形面积为 S(A)4r2故() = 42 22+42 = 2 +2 故选:A 本题考查了几何概型的概率计算方法属于基础题 4 已知定义在 R 上的奇函数 f (x) , 当 x0 时, f (x) log2x, 且 f (m)

16、 2, 则 m ( ) A1 4 B4 C4 或1 4 D4 或 1 4 根据题意,分 m0 与 m0 两种情况讨论,结合函数的奇偶性与解析式分析,求出 m 的 值,综合即可得答案 根据题意,当 x0 时,f(x)log2x,此时若 f(m)2,必有 log2m2,解可得 m4; 当 x0,则x0,此时若 f(m)2,则有 f(m)2,即 log2(m)2, 解可得 m= 1 4; 综合可得:m4 或 1 4; 故选:D 本题考查函数的奇偶性的性质以及应用,涉及函数解析式以及函数值的计算,属于基础 题 5已知平面向量 、 的夹角为 135,且 为单位向量, = (1,1),则| + | =(

17、) A5 B3 + 2 C1 D3 2 根据平面向量的数量积计算模长即可 由题意知,平面向量 、 的夹角为 135,且| |1, = (1,1), 所以| |= 12+12= 2, =1 2 cos1351, ( + )2= 2 +2 + 2 =1+2(1)+21, 所以| + | =1 故选:C 本题考查了根据平面向量的数量积计算模长的应用问题,是基础题 6已知 F1、F2分别为椭圆 C: 2 2 + 2 2 = 1(0)的左、右焦点,过 F1且垂直于 x 轴 的直线 l 交椭圆 C 于 A,B 两点,若AF2B 是边长为 4 的等边三角形,则椭圆 C 的方程 为( ) A 2 4 + 2

18、3 = 1 B 2 9 + 2 6 = 1 C 2 16 + 2 4 = 1 D 2 16 + 2 9 = 1 由AF2B 是边长为 4 的等边三角形,及椭圆的定义可得 2a,及 2c 与 2a 的关系求出 c, 再由 a,b,c 之间的关系求出椭圆的方程 【解答】 解: 因为AF2B 是边长为 4 的等边三角形, 所以AF2F130, 2a|AF1|+|AF2| 2+46,2c|F1F2|= 3|AF1|23, 所以 b2a2c2936, 所以椭圆的方程为: 2 9 + 2 6 =1, 故选:B 本题考查椭圆的定义及椭圆的性质,属于中档题 7定义运算 a*b 为执行如图所示的程序框图输出的

19、S 值,则(cos 12)*(sin 12)( ) A 3 2 B 3 2 C1 D1 先判断 acos 12和 bsin 12的大小,然后代入框图的左边执行框计算即可 0 4 时, 12 12, = 22 12 23 12 12 1+ 6 3 6 1 故选:C 本题考查了程序框图的条件结构以及三角函数的二倍角公式等基础知识,同时考查了学 生的逻辑推理能力和数学运算能力难度不大 8 尘劫记中记载了这样一个问题:第 1 个月,有一对老鼠生了 6 对小老鼠,两代老鼠加 起来共有 7 对; 第 2 个月, 每对老鼠各生了 6 对小老鼠, 三代老鼠共有 49 对 由此类推, 父母、子女、孙子、曾孙辈的

20、大小老鼠们,每个月每对老鼠都会生 6 对第 6 个月,共 有( )对老鼠 A66 B76 C6(6 6;1) 5 D7(7 6;1) 6 由题意可得an是以 7 为首项,7 为公比的等比数列,即可求出 设第 n 个月小老鼠共有 an对,由题意可得an是以 7 为首项,7 为公比的等比数列, a677576, 故选:B 本题考查了等比数列在实际生活中的应用,属于基础题 9为加强学生音乐素养的培育,东莞市某高中举行“校园十大歌手”比赛,比赛现场有 7 名评委给选手评分,另外,学校也提前发起了网络评分,学生们可以在网络上给选手评 分,场内数百名学生均参与网络评分某选手参加比赛后,现场评委的评分表和该

21、选手 网络得分的条形图如图所示: 评委序号 评分 10 8 9 8 9 10 9 记现场评委评分的平均分为1,网络评分的平均分为2,所有评委与场内学生评分的平 均数为,那么下列选项正确的是( ) A 1+2 2 B = 1+2 2 C 1+2 2 D与1:2 2 关系不确定 根据题意求出平均数,然后估算求出总平均数 1= 10+8+9+8+9+10+9 7 =9, 2=0.17+0.18+0.29+0.6109.3, 则1:2 2 =9.15, 设场内人数为 a(a100) ,则 = 9.3+63 +7 = 9.3(+7)2.1 +7 = 9.3 2.1 +7 因为 a100,所以9.3 2.

22、1 107 9.28 1+2 2 , 故选:C 本题考查平均数,属于基础题 10已知函数() = ( + )(0, 2 2)的最小正周期为 ,将 f(x)的图象 向左平移 3个单位后,所得图象关于原点对称,则函数 f(x)的图象( ) A关于直线 = 2对称 B关于直线 = 3对称 C关于点( 2,0)对称 D关于点( 3,0)对称 根据条件求出函数的解析式,结合函数的对称性进行求解即可 f(x)的最小正周期为 , 则2 =,得 2, 则 f(x)cos(2x+) , 将 f(x)的图象向左平移 3个单位后,得到 ycos2(x+ 3)+cos(2x+ 2 3 +) ,所 得图象关于原点对称,

23、 则2 3 +k+ 2,kZ, 得 k 6,kZ, 2 2, 当 k0 时,= 6, 即 f(x)cos(2x 6) , f( 3)cos(2 3 6)cos 2 =0, 则 f(x)关于点( 3,0)对称, 故选:D 本题主要考查三角函数的图象和性质,利用条件求出函数的解析式,以及利用对称性是 解决本题的关键难度不大 11已知双曲线 C: 2 2 2 2 = 1(0,0)的一条渐近线被圆(xc)2+y22a2截得的 弦长为 2b(其中 c 为双曲线的半焦距) ,则双曲线 C 的离心率为( ) A 2 2 B2 C3 D2 由题意画出图形,利用垂径定理可得 a 与 b 的关系,得到双曲线为等轴

24、双曲线,则离心 率可求 如图所示,双曲线的两条渐近线关于 x 轴对称, 取 y= 与圆相交于点 A,B,|AB|2b, 圆心(c,0)到直线 bxay0 的距离 d= | 2+2 = 结合垂径定理可得 2a2b2+b2,即 ab 双曲线为等轴双曲线,其离心率 e= 2 故选:B 本题考查双曲线的简单性质,考查直线与圆位置关系的应用,是基础的计算题 12 在棱长为 1 的正方体 ABCDA1B1C1D1中, E、 F 分别为 AB 和 DD1的中点, 经过点 B1, E,F 的平面 交 AD 于 G,则 AG( ) A1 3 B1 4 C3 4 D2 3 由面面平行的性质定理可得平面 B1EF

25、与平面 D1DCC1的交线与 B1E 平行,过 F 作 B1E 的平行线交 C1D1于 H,连接 B1H,过 E 作 EGB1H,交 AD 于 G,由比例关系可得所求 值 由平面 A1ABB1平面 D1DCC1, 可得平面 B1EF 与平面 D1DCC1的交线与 B1E 平行, 过 F 作 B1E 的平行线交 C1D1于 H, 由 F 为 DD1的中点,可得 H 为 C1D1的四等分点, 连接 B1H,过 E 作 EGB1H,交 AD 于 G, 从而 G 为 AD 的三等分点,则 AG= 2 3 故选:D 本题考查空间线线、线面和面面的位置关系,考查线面相交的交点情况,注意运用面面 平行的性质

26、定理,考查运算能力和空间想象能力,属于中档题 二、填空题:本大题共二、填空题:本大题共 4 小题,每小题小题,每小题 5 分,共分,共 20 分分.请把答案填在答题卡的相应位置上请把答案填在答题卡的相应位置上. 13各项均为正数的等比数列an中,2a2,a4,3a3成等差数列,则2:5 4:7 = 1 4 设等比数列的公比为 q,q0,由等差数列的中项性质和等比数列的通项公式,解方程可 得公比 q,再结合等比数列的通项公式计算可得所求值 各项均为正数的等比数列an的公比设为 q,q0, 由 2a2,a4,3a3成等差数列,可得 2a42a2+3a3, 即为 2a1q32a1q+3a1q2, 化

27、为 2q23q20,解得 q2 或 1 2(舍去) , 则2:5 4:7 = 1:14 13:16 = 1 2 = 1 4, 故答案为:1 4 本题考查等比数列的通项公式和等差数列的中项性质,考查方程思想和运算能力,是一 道基本题 14已知(1+ax) (1+x)4的展开式中 x2的系数为 18,则 a 3 将原式拆成(1+x)4+ax(1+x)4的形式,然后分别求出(1+x)4展开式中的二次项系数 和一次项系数,得到关于 a 的方程即可 原式(1+x)4+ax(1+x)4, 所以展开式中含 x2的系数为:4 2 + 4 1 = 6 + 4 = 18, 解得 a3 故答案为:3 本题考查二项展

28、开式的通项以及系数的求法同时考查学生运用方程思想、转化思想解 决问题的能力和运算能力属于基础题 15已知三棱锥 PABC 中,PA平面 ABC,PABC2,BAC= 3,则三棱锥 PABC 的外接球的表面积为 28 3 将三棱锥还原成直三棱柱,如图,数形结合即可求出外接球半径 如图,将三棱锥还原成直三棱柱,则三棱柱的外接球记为球 O,D,D为上下底面的外 心, O 为 DD的中点,AD 为底面外接圆的半径, 根据正弦定理可得 2AD= 2 3 = 43 3 , 由 OD1,AD= 23 3 ,则 AO= 21 3 , 所以球 O 的表面积为 4R2= 28 3 故答案为:28 3 本题考查三棱

29、锥外接球表面积公式,数形结合思想,属于中档题 16已知() = +( 2) 2在 x(0,1)上恰有一个零点,则正实数 a 的取值范围为 (0,1) 原题等价于函数() = ( 2 )和 h (x) 2x2ax 的图象在 (0, 1) 上只有一个公共点, 作出函数图象,由图象观察可知,只需 h(1)g(1)即符合题意,由此得解 依题意,方程 :( 2) 2 = 0在(0,1)上仅有一个解, 即( 2 ) = 22 (0)在(0,1)上仅有一个实数根, 亦即函数() = ( 2 )和 h(x)2x2ax 的图象在(0,1)上只有一个公共点, 而 h(x)2x2ax 必经过原点,且其对称轴为 =

30、4 0, 由图可得当 h(1)g(1)时符合题意,即 2a1,解得 a1, 又a0, 0a1 故答案为: (0,1) 本题考查函数零点与方程根的关系,考查数形结合思想,属于中档题 三、解答题:本大题共三、解答题:本大题共 5 小题,共小题,共 70 分分.解答应写出文字说明、证明过程或演算步骤解答应写出文字说明、证明过程或演算步骤.第第 17 至至 21 题为必考题,每个试题考生都必须作答,第题为必考题,每个试题考生都必须作答,第 22、23 题为选考题,考生根据要求作答题为选考题,考生根据要求作答. (一)必考题:本大题共(一)必考题:本大题共 5 小题,每小题小题,每小题 12 分,共分,

31、共 60 分分. 17ABC 的内角 A,B,C 的对边分别为 a,b,c,若 = 3 3 (1)求 A; (2)若 b4,c2,AM 为 BC 边上的中线,求 AM 的长 (1)由 = 3 3 ,利用正弦定理可得:sinCsinAcosB= 3 3 sinBsinA,sinC sin(A+B)sinAcosB+cosAsinB化简即可得出 (2)ABC 中,由余弦定理可得:a242+22242cos 3,解得 a根据勾股定理的 定理及其逆定理即可得出 (1)由 = 3 3 ,可得:sinCsinAcosB= 3 3 sinBsinA,sinCsin(A+B) sinAcosB+cosAsin

32、B cosAsinB= 3 3 sinBsinA0,化为:tanA= 3,A(0,) A= 3 (2)ABC 中,由余弦定理可得:a242+22242cos 3 =12,解得 a23 a2+c2b2,B= 2 AM=22+ (3)2= 7 本题考查了解三角形、和差公式、正弦定理余弦定理,考查了推理能力与计算能力,属 于中档题 18如图,在四棱锥 PABCD 中,底面 ABCD 为直角梯形,其中 ABBC,ADBC,AD 4,APABBC2,E 是 AD 的中点,AC 和 BE 交于点 O,且 PO平面 ABCD (1)证明:平面 PAC平面 PCD; (2)求直线 AB 与平面 PCD所成角的

33、大小 (1) 由已知 PO面 ABCD 得 POCD, 再由已知线段大小满足勾股定理可证 ACCD, 所以线面垂直,进而面面垂直 (2)由 PO,AC,BE 两两垂直可建立坐标系,找出点坐标,计算出向量坐标,进而算 出面的法向量,利用线面角的向量夹角公式求出结果 (1)因为 ADBC,AD2BC4,E 是 AD 的中点,所以四边形 ABCE 是平行四边形, 又因为 ABBC,ABBC,所以四边形 ABCE 是正方形,所以 CEAD,又因为 CEAE ED2,所以 ACCD22, 又因为 AD4,所以 AC2+CD2AD2,故 CDAC, 因为 PO平面 ABCD,CD平面 ABCD,所以 CD

34、PO, 又因为 ACPOO,AC,PO平面 PAC,所以 CD平面 PAC, 因为 CD平面 PCD,所以平面 PAC平面 PCD (2)由(1)知 PO,AC,BE 两两垂直,故以 O 为原点,OBOC,OP 为坐标轴建立 如图坐标系,由已知得PAC 为等腰直角三角形,故 PO= 1 2AC= 2, 则 B(2,0,0) ,A(0,2,0) ,P(0,0,2) ,C(0,2,0) ,E(2,0,0) , 所以 =(2,2,0) , =(0,2,2) , = =(22,0,0) , 设面 PCD 的法向量为 =(x,y,z) ,由 , 得2 2 = 0 22 = 0 ,即 = 0 = , 令

35、z1,则 =(0,1,1) , 设直线AB与面PCD所成角为, (0, 2) , 则sin|cos , |=| | | | | = 2 22 = 1 2, 因为 (0, 2) ,所以 = 6 所以直线 AB 与面 PCD 所成角 = 6 本题考查面面垂直的判定定理的应用,在空间直角坐标系内利用向量求线面角的方法, 属于中档难题 19已知抛物线 E:y24x,过抛物线焦点 F 的直线 1 分别交抛物线 E 和圆 F: (x1)2+y2 1 于点 A、C、D、B(自上而下) (1)求证:|AC|BD|为定值; (2)若|AC|、|CD|、|DB|成等差数列,求直线 l 的方程 (1)由题意就得 F

36、(1,0) ,可得圆 F 的半径为 1,当直线 l 的斜率不存在时,求出点的 坐标可得|AC|BD|111;当直线 l 的斜率存在时,设直线方程为 yk(x1) ,联 立直线方程与抛物线方程,利用根与系数的关系结合抛物线的定义可得|AC|BD|x1x2 1; (2) 由|AC|、 |CD|、 |DB|成等差数列, 得|AC|+|BD|2|CD|4, 得到弦长|AB|AC|+|CD|+|DB| 6,由弦长公式及根与系数的关系列式求解 k,则直线方程可求 (1)证明:由题意,F(1,0) ,圆 F 的半径为 1, 当直线 l 的斜率不存在时,l:x1,交点 A(1,2) ,B(1,2) ,C(1,

37、1) ,D(1, 1) , 此时|AC|BD|111; 当直线 l 的斜率存在时,设直线方程为 yk(x1) ,A(x1,y1) ,B(x2,y2) , 联立 = ( 1) 2= 4 ,得 k2x2(2k2+4)x+k20 16(k2+1)0 则1+ 2= 2 + 4 2,x1x11, 由抛物线的定义,|AC|AF|CF|x1+11x1,同理|BD|x2 |AC|BD|x1x21; (2)解:由|AC|、|CD|、|DB|成等差数列,得|AC|+|BD|2|CD|4 弦长|AB|AC|+|CD|+|DB|6 由(1)知,显然斜率存在,由抛物线的定义得|AB|x1+x2+26 故4 + 4 2

38、= 6,解得 k= 2 直线 l 的方程为 y= 2( 1) 本题考查圆与抛物线的综合,考查抛物线的简单性质,着重考查抛物线定义的应用,考 查计算能力,是中档题 20已知函数 f(x)ex+3ax (1)讨论函数 f(x)的单调性: (2)若函数 f(x)在区间1,+)上的最小值为 0,求 a 的值 (1)通过当 a0 时,导函数的符号判断单调性;当 a0 时,f(x)0,求出极值点, 判断导函数的符号,然后求解单调性 (2)说明当 a0 时,不符合题意当 a0 时,f(x)ex+3a,利用函数的单调性,结 合当 ln(3a)1,当 ln(3a)1 时,函数的最值,判断求解即可 (1)f(x)

39、ex+3ax,则 f(x)ex+3a, 当 a0 时,则 f(x)0,故 f(x)在(,+)上单调递增, 当 a0 时,令 f(x)ex+3a0,解得 xln(3a) , 当 x(,ln(3a) )时,f(x)0,函数 f(x)单调递减, 当 x(ln(3a) ,+)时,f(x)0,函数 f(x)单调递增, 故 f(x)在(,ln(3a)上单调递减,在(ln(3a) ,+)上单调递增; (2)当 a0 时,函数 f(x)ex+3ax0,不符合题意, 当 a0 时,由(1)可知 f(x)在(,ln(3a)上单调递减,在(ln(3a) ,+ )上单调递增, 当 ln(3a)1 时,即 3 a0 时

40、,函数 f(x)在1,+)上单调递增, f(x)minf(1)3a+e, 由题意可得 3a+e0,即 a= 3,符合题意, 当 ln(3a)1 时,即 a 3时,函数 f(x)在1,ln(3a) )上单调递减,在(ln (3a) ,+)上单调递增, f(x)minfln(3a)3a+3aln(3a) , 由题意可得3a+3aln(3a)0,解得 a= 3,不符合题意, 综上所述 a= 3 本题考查函数的导数的应用,函数的单调性以及函数的最值的求法,考查分析问题解决 问题的能力 21在党中央的正确领导下,通过全国人民的齐心协力,特别是全体一线医护人员的奋力救 治,二月份“新冠肺炎”疫情得到了控制

41、甲、乙两个地区采取防护措施后,统计了从 2 月 7 日到 2 月 13 日一周的新增“新冠肺炎”确诊人数,绘制成如图折线图: (1)根据图中甲、乙两个地区折线图的信息,写出你认为最重要的两个统计结论; (2)治疗“新冠肺炎”药品的研发成了当务之急,某药企计划对甲地区的 A 项目或乙地 区的 B 项目投入研发资金,经过评估,对于 A 项目,每投资十万元,一年后利润是 l.38 万元、1.18 万元、l.14 万元的概率分别为1 6、 1 2、 1 3;对于 B 项目,利润与产品价格的调整 有关,已知 B项目产品价格在一年内进行 2 次独立的调整,每次价格调整中,产品价 格下调的概率都是 p(0p

42、1) ,记 B 项目一年内产品价格的下调次数为 ,每投资十万 元, 取 0、1、2 时,一年后相应利润是 1.4 万元、1.25 万元、0.6 万元记对 A 项目投 资十万元,一年后利润的随机变量为 1,记对 B 项目投资十万元,一年后利润的随机变 量为 2 (i)求 1,2的概率分布列和数学期望 E1,E2; (ii)如果你是投资决策者,将做出怎样的决策?请写出决策理由 (1)根据图中甲、乙两个地区折线图的信息,得到甲地区比乙地区的新增人数的平均 数低甲地区比乙地区的方差大 (2) (i)求出 1的概率分布列,得到 E11.2,由题意得 B(2,p) ,求出 的概率 分布列,再由由题意得下调次数 和利润 2的关系求出 2的概率分布列和 E20.5p2 0.3p+1.4 (ii)当 E1E2,解得 0p 2 5,当 E1E2 时,p= 2 5当 E1E2 时,2 5 1, 从而当 0p 2 5时,投资 B 项目;当 p= 2 5时,两个项目都可以;当 2 5 1时,投资 A 项目 (1)根据图中甲、乙两个地区折线图的信息,得到: 甲地区比乙地区的新增人数的平均数低 甲地区比乙地区的方差大 (2) (i)由题意得 1的概率分布列为:来源:学.科.网 Z.X.X