ImageVerifierCode 换一换
格式:DOCX , 页数:22 ,大小:276.73KB ,
资源ID:138023      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-138023.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(山东省聊城市2020届高考模拟数学试题(一)含答案解析)为本站会员(h****3)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

山东省聊城市2020届高考模拟数学试题(一)含答案解析

1、山东省聊城市山东省聊城市 2020 届高考模拟数学试题(一)届高考模拟数学试题(一) 一、单项选择题:本题共一、单项选择题:本题共 8 小题,每小题小题,每小题 5 分,共分,共 40 分分.在每小题给出的四个选项中,只有在每小题给出的四个选项中,只有 一项是符合题目要求的一项是符合题目要求的. 1已知集合 AxN*|x4,Bx|x(x2)0,则集合 AB 中元素的个数为( ) A1 B2 C3 D4 2已知复数 z 满足 z(1+2i)|3+4i|(i 是虚数单位) ,则 z 的共轭复数 =( ) A1+2i B12i C1+2i D12i 3 “a2”是“xR,ax2+1为真命题”的( )

2、 A充分不必要条件 B必要不充分条件 C充要条件 D既不充分也不必要条件 4已知( 6) = 3 5,则( + 3) =( ) A3 5 B 3 5 C4 5 D 4 5 5将某校高一 3 班全体学生分成三个小组分别到三个不同的地方参加植树活动,若每个学 生被分到三个小组的概率都相等,则这个班的甲,乙两同学分到同一个小组的概率为 ( ) A2 3 B1 2 C1 3 D1 9 6数列 1,6,15,28,45,中的每一项都可用如图所示的六边形表示出来,故称它们为 六边形数,那么第 10 个六边形数为( ) A153 B190 C231 D276 7正方体 ABCDA1B1C1D1的棱长为 1,

3、点 M 是棱 CC1的中点,点 A,B,D,M 都在球 O 的球面上,则球 O 的表面积为( ) A3 2 B3 C9 4 D9 8高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子“的称号,为了纪念 数学家高斯, 人们把函数 yx, xR 称为高斯函数, 其中x表示不超过 x 的最大整数 设 xxx,则函数 f(x)2xxx1 的所有零点之和为( ) A1 B0 C1 D2 二、多项选择题:本题共二、多项选择题:本题共 4 小题,每小题小题,每小题 5 分,共分,共 20 分分.在每小题给出的四个选项中有多项在每小题给出的四个选项中有多项 符合题目要求符合题目要求.全部选对的得全部选

4、对的得 5 分,部分选对的得分,部分选对的得 3 分,有选错的得分,有选错的得 0 分分. 9下列说法正确的是( ) A回归直线一定经过样本点的中心(,) B若两个具有线性相关关系的变量的相关性越强,则线性相关系数 r 的值越接近于 1 C在残差图中,残差点分布的水平带状区域越窄,说明模型的拟合精度越高 D在线性回归模型中,相关指数 R2越接近于 1,说明回归的效果越好 10若双曲线: 2 2 2 2 = 1(0,0)的实轴长为 6,焦距为 10,右焦点为 F,则下列 结论正确的是( ) AC 的渐近线上的点到 F 距离的最小值为 4 BC 的离心率为5 4 CC 上的点到 F 距离的最小值为

5、 2 D过 F 的最短的弦长为32 3 11已知直线 l:2kx2ykp0 与抛物线 C:y22px(p0)相交于 A,B 两点,点 M( 1,1)是抛物线 C 的准线与以 AB 为直径的圆的公共点,则下列结论正确的是( ) Ap2 Bk2 C|AB|5 DMAB 的面积为55 12若实数 a2,则下列不等式中一定成立的是( ) A (a+1)a+2(a+2)a+1 Bloga(a+1)loga+1(a+2) C( + 1) +1 D:1( + 2) +2 +1 三、填空题:本题共三、填空题:本题共 4 小题,每小题小题,每小题 5 分,共分,共 20 分分. 13已知( 2 2) 5的展开式

6、中 x1的系数为40,则实数 a 14若函数 f(x)sinx+cosx 在0,a上单调递增,则 a 的取值范围为 15 已知 = (cos, sin) , = (sin, cos) , 且 +100, 则向量与的夹角 16点 M,N 分别为三棱柱 ABCA1B1C1的棱 BC,BB1的中点,设A1MN 的面积为 S1, 平面 A1MN 截三棱柱 ABCA1B1C1所得截面面积为 S,五棱锥 A1CC1B1NM 的体积为 V1,三棱柱 ABCA1B1C1的体积为 V,则 1 = ,1 = 四、解答题:本题共四、解答题:本题共 6 小题,共小题,共 70 分分.解答应写出文字说明、证明过程或演算

7、步骤解答应写出文字说明、证明过程或演算步骤. 17 a5b3+b5, S387a9a10b1+b2这三个条件中任选一个, 补充在下面问题中, 并给出解答 设等差数列an的前 n 项和为 Sn,数列bn的前 n 项和为 Tn,_,a1b6,若对 于任意 nN*都有 Tn2bn1,且 SnSk(k 为常数) ,求正整数 k 的值 注:如果选择多个条件分别解答,那么按第一个解答计分 18在平面四边形 ABCD 中, = 2, = 17, = 45 (1)求ABD 的面积; (2)设 M 为 BD 的中点,且 MCMB,求四边形 ABCD 周长的最大值 19如图,在四边形 ABCD 中,BCCD,BC

8、CD,ADBD,以 BD 为折痕把ABD 折 起,使点 A 到达点 P 的位置,且 PCBC (1)证明:PD平面 BCD; (2)若 M 为 PB 的中点,二面角 PBCD 等于 60,求直线 PC 与平面 MCD 所成角 的正弦值 20已知椭圆: 2 2 + 2 2 = 1(0)的长轴长为 4,右焦点为 F,且椭圆 C 上的点到点 F 的距离的最小值与最大值的积为 1,圆 O:x2+y21 与 x 轴交于 A,B 两点 (1)求椭圆 C 的方程; (2)动直线 l:ykx+m 与椭圆 C 交于 P,Q 两点,且直线 l 与圆 O 相切,求APQ 的 面积与BPQ 的面积乘积的取值范围 21

9、2020 年春节期间,武汉市爆发了新型冠状病毒肺炎疫情,在党中央的坚强领导下,全 国人民团结一心,众志成城,共同抗击疫情某中学寒假开学后,为了普及传染病知识, 增强学生的防范意识,提高自身保护能力,校委会在全校学生范围内,组织了一次传染 病及个人卫生相关知识有奖竞赛(满分 100 分) ,竞赛奖励规则如下,得分在70,80) 内的学生获三等奖,得分在80,90)内的学生获二等奖,得分在90,100内的学生获一 等奖,其他学生不得奖教务处为了解学生对相关知识的掌握情况,随机抽取了 100 名 学生的竞赛成绩,并以此为样本绘制了如下样本频率分布直方图 (1)现从该样本中随机抽取两名学生的竞赛成绩,

10、求这两名学生中恰有一名学生获奖的 概率; (2)若该校所有参赛学生的成绩 X 近似服从正态分布 N(,2) ,其中15, 为 样本平均数的估计值,利用所得正态分布模型解决以下问题: (i)若该校共有 10000 名学生参加了竞赛,试估计参赛学生中成绩超过 79 分的学生数 (结果四舍五人到整数) ; (ii)若从所有参赛学生中(参赛学生数大于 10000)随机抽取 3 名学生进行座谈,设其 中竞赛成绩在 64 分以上的学生数为 ,求随机变量 的分布列和均值 附:若随机变量 X 服从正态分布 N(,2) ,则 P(X+)0.6827,P( 2X+2)0.9544,P(3X+3)0.9973 22

11、已知函数 f(x)ax+x2lnx (1)证明:当 a0 时,函数 f(x)有唯一的极值点; (2)设 a 为正整数,若不等式 f(x)ex在(0,+)内恒成立,求 a 的最大值 一、单项选择题:本题共一、单项选择题:本题共 8 小题,每小题小题,每小题5 分,共分,共 40 分分.在每小题给出的四个选项中,只有在每小题给出的四个选项中,只有 一项是符合题目要求的一项是符合题目要求的. 1已知集合 AxN*|x4,Bx|x(x2)0,则集合 AB 中元素的个数为( ) A1 B2 C3 D4 可以求出集合 A,B,然后进行交集的运算求出 AB,进而可得出集合 AB 中元素的个 数 A1,2,3

12、,Bx|0x2, AB1,2, 集合 AB 中元素的个数为 2 故选:B 【点评】本题考查了描述法、列举法的定义,一元二次不等式的解法,交集的运算,集 合元素的定义,考查了计算能力,属于基础题 2已知复数 z 满足 z(1+2i)|3+4i|(i 是虚数单位) ,则 z 的共轭复数 =( ) A1+2i B12i C1+2i D12i 把已知等式变形,再由复数代数形式的乘除运算化简得答案 由 z(1+2i)|3+4i|5,得 z= 5 1+2 = 5(12) (1+2)(12) = 1 2, = 1 + 2 故选:A 本题考查复数代数形式的乘除运算化简,考查复数的基本概念,是基础题 3 “a2

13、”是“xR,ax2+1为真命题”的( ) A充分不必要条件 B必要不充分条件 C充要条件 D既不充分也不必要条件 先化简,再判断单调性 “xR,ax2+1为真命题” ,则 a1, 则 a2 是 a1 的必要不充分条件, 故选:B 本题考查解不等式,以及充要性,属于基础题 4已知( 6) = 3 5,则( + 3) =( ) A3 5 B 3 5 C4 5 D 4 5 由题意利用诱导公式求得要求式子的值 已知( 6) = 3 5,则( + 3) =cos 2 (+ 3)cos( 6 )cos( 6)= 3 5, 故选:A 本题主要考查诱导公式的应用,属于基础题 5将某校高一 3 班全体学生分成三

14、个小组分别到三个不同的地方参加植树活动,若每个学 生被分到三个小组的概率都相等,则这个班的甲,乙两同学分到同一个小组的概率为 ( ) A2 3 B1 2 C1 3 D1 9 这个班的甲,乙两同学分配的基本事件总数 n339,这个班的甲,乙两同学分到同 一个小组包含的基本事件个数 m3,由此能求出这个班的甲,乙两同学分到同一个小组 的概率 将某校高一 3 班全体学生分成三个小组分别到三个不同的地方参加植树活动, 每个学生被分到三个小组的概率都相等, 这个班的甲,乙两同学分配的基本事件总数 n339, 这个班的甲,乙两同学分到同一个小组包含的基本事件个数 m3, 则这个班的甲,乙两同学分到同一个小

15、组的概率为 p= = 3 9 = 1 3 故选:C 本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,是基础题 6数列 1,6,15,28,45,中的每一项都可用如图所示的六边形表示出来,故称它们为 六边形数,那么第 10 个六边形数为( ) A153 B190 C231 D276 根据已知数,求出其规律即可求解结论 因为:1, 61+5, 151+5+9, 281+5+9+13, 451+5+9+13+19; 即这些六边形数是由首项为 1,公差为 4 的等差数列的和组成的; 所以:cn1n+ (1) 2 42n2n; 第 10 个六边形数为:210210190 故选:B 本题主要

16、考查归纳推理,归纳推理的一般步骤是: (1)通过观察个别情况发现某些相同 性质; (2)从已知的相同性质中推出一个明确表达的一般性命题(猜想) 7正方体 ABCDA1B1C1D1的棱长为 1,点 M 是棱 CC1的中点,点 A,B,D,M 都在球 O 的球面上,则球 O 的表面积为( ) A3 2 B3 C9 4 D9 由题意可得底面外接圆的圆心为对角线 BD 的中点 E,过 E 做底面的垂线在垂线上取 O 使 OMOB,则 O 为外接球的球心,画图可得(详见解答)在两个三角形中求出外接球 的半径,进而求出外接球的表面积 取 BD 的中点 E,则 E 为ADB 的外心; 由题意可得外接球的球心

17、直线 EO 上, 设球心为 O,连接 MO,OB 可得都是外接球的半径, 过 O 作 OHMC 与 H; 则 OB2OE2+EB2OE2+( 2 2 )2 OM2OH2+MH2CE2+MH2= ( 2 2 )2+(1 2 )22 由可得:R2OB2= 9 16; 则球 O 的表面积为:4R2= 9 4 ; 故选:C 本题考查三棱锥的外接球的半径与棱长的关系,及球的的表面积公式,属于中档题,解 题时要认真审题,注意空间思维能力的培养 8高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子“的称号,为了纪念 数学家高斯, 人们把函数 yx, xR 称为高斯函数, 其中x表示不超过 x 的最大

18、整数 设 xxx,则函数 f(x)2xxx1 的所有零点之和为( ) A1 B0 C1 D2 由题意,函数 f(x)2xxx1 的零点,即方程 2x(xx)x10 的根,也就 是 2x(xx)x+1 的根,x0 显然不是上面方程的根;当 x0 时,方程化为 2(x x)= 1 + 1 ,作出两函数 y2(xx)与y1+ 1 的图象,数形结合得答案 xxx,f(x)2xxx12x(xx)x1, 函数 f(x)2xxx1 的零点,即方程 2x(xx)x10 的根, 也就是 2x(xx)x+1 的根 x0 显然不是上面方程的根; 当 x0 时,方程化为 2(xx)= 1 + 1 作出两函数 y2(x

19、x)与 y1+ 1 的图象如图: 由图可知,两函数的交点除(1,0)之外,其余的交点关于(0,1)中心对称, 则函数 f(x)2xxx1 的所有零点之和为1 故选:A 本题考查函数零点与方程根的关系, 考查数学转化思想方法与数形结合的解题思想方法, 是中档题 二、多项选择题:本题共二、多项选择题:本题共 4 小题,每小题小题,每小题 5 分,共分,共 20 分分.在每小题给出的四个选项中有多项在每小题给出的四个选项中有多项 符合题目要求符合题目要求.全部选对的得全部选对的得 5 分,部分选对的得分,部分选对的得 3 分,有选错的得分,有选错的得 0 分分. 9下列说法正确的是( ) A回归直线

20、一定经过样本点的中心(,) B若两个具有线性相关关系的变量的相关性越强,则线性相关系数 r 的值越接近于 1 C在残差图中,残差点分布的水平带状区域越窄,说明模型的拟合精度越高 D在线性回归模型中,相关指数 R2越接近于 1,说明回归的效果越好 根据学过的知识点进行判断 回归直线一定经过样本点的中心(,) ,A 对; 若两个具有线性相关关系的变量的相关性越强, 则线性相关系数 r 的值越接近于 1 或1, B 错; 在残差图中,残差点分布的水平带状区域越窄,说明模型的拟合精度越高,C 对; 在线性回归模型中,相关指数 R2越接近于 1,说明回归的效果越好,D 对, 故选:ACD 本题考查回归方

21、程的性质,属于基础题 10若双曲线: 2 2 2 2 = 1(0,0)的实轴长为 6,焦距为 10,右焦点为 F,则下列 结论正确的是( ) AC 的渐近线上的点到 F 距离的最小值为 4 BC 的离心率为5 4 CC 上的点到 F 距离的最小值为 2 D过 F 的最短的弦长为32 3 由题意求出 a,b,c 的值,进而可得所给命题的真假 由题意可得 2a6,2c10,所以 a3,c5,b= 2 2=4,右焦点 F(5,0) ,渐 近线的方程为 4x3y0, 所以C的渐近线上的点到F距离的最小值F到渐近线的距离d= =b4, 所以A正确, 离心率 e= = 5 3,所以 B 不正确; 双曲线上

22、的点为顶点到焦点的距离最小,532,所以 C 正确; 过焦点最短的弦长为垂直与 x 轴的直线与双曲线的弦长,2 2 = 32 3 ,故 D 正确, 故选:ACD 本题考查双曲线的性质,属于中档题 11已知直线 l:2kx2ykp0 与抛物线 C:y22px(p0)相交于 A,B 两点,点 M( 1,1)是抛物线 C 的准线与以 AB 为直径的圆的公共点,则下列结论正确的是( ) 来源:学科网 ZXXK Ap2 Bk2 C|AB|5 DMAB 的面积为55 将直线 l 的方程整理可得恒过定点即为抛物线的焦点,由 M 在抛物线的准线上求出 p 的 值,进而可得 AB 的方程,与抛物线联立求出两根之

23、和及两根之积,再由以 AB 为直径的 圆过 M 点可得可得 =0 可得 k 的值,进而求出弦长 AB 的值,再求 M 到直线 AB 的距离可得三角形 MAB 的面积,可判断所给命题的真假 直线 l:2kx2ykp0 整理可得 k(2xp)2y0,恒过( 2,0) ,即过抛物线的焦点 F, 所以抛物准线方程为 x= 2,点 M(1,1)是抛物线 C 的准线与以 AB 为直径的圆 的公共点,M 在抛物线的准线上,所以 2 = 1,解得 p2, 所以 A 正确,焦点坐标为(1,0) ,直线 l 整理可得 yk(x1) , 设 A(x1,y1) ,B(x2,y2) ,联立直线与抛物线的方程 = ( 1

24、) 2= 4 ,整理可得:k2x2 (2k2+4)x+k20, x1x21,x1+x2= 22+4 2 ,y1+y2k(x1+x22)= 4 ,y1y2412 = 4, 由题意可得 =0,即(x1+1,y1+1) (x2+1,y2+1)0 整理可得 x1x2+ (x1+x2)+1+y1y2+(y1+y2) +10, 代入可得 1+ 22+4 2 +14+ 4 +10, 解得: 4 2 + 4 +10,解得 k2,所以 B 正确, 所以 x1x21,x1+x23, 所以弦长|AB|= 1 + 2(1+ 2)2 412= 5 5 =5,所以 C 正确; 直线 AB 的方程为:y2(x1) ,即 2

25、x+y20,所以 M 到直线 AB 的距离 d= |212| 5 = 5, 所以 SMAB= 1 2|AB|d= 1 2 5 5 = 55 2 ,所以 D 不正确, 故选:ABC 本题考查直线恒过的定点的坐标及直线与抛物线的综合,面积的求法,属于中档题 12若实数 a2,则下列不等式中一定成立的是( ) A (a+1)a+2(a+2)a+1 Bloga(a+1)loga+1(a+2) C( + 1) +1 D:1( + 2) +2 +1 令 f(x)= ,可得 f(x)= 1 2 ,利用导数研究其单调性即可判断出 ACD 的大小 关系对于 B令 g(x)logx(x+1) (x2) 利用导数研

26、究其单调性即可判断出 B 的 大小关系 令 f(x)= ,则 f(x)= 1 2 , 可得函数 f(x)在(0,e)上单调递增,在(e,+)上单调递减, 实数 a2,a+1e, (:1) :1 (:2) :2 ,(a+1)a+2(a+2)a+1 (a+2)lna(a+1)ln(a+2) ,可得:loga+1(a+2) +2 +1 (:1) :1 与 的大小关系不确定 可得:AD 正确,C 不正确 对于 B令 g(x)logx(x+1) (x2) g(x)= (+1)(+1) 2 0, 函数 g(x)在2,+)上单调递减,loga(a+1)log(a+1)(a+2) , 综上可得:只有 AD 正

27、确 故选:AD 本题考查了利用导数研究函数的单调性极值与最值、数形结合方法、等价转化方法、对 数运算性质,考查了推理能力与计算能力,属于中档题 三、填空题:本题共三、填空题:本题共 4 小题,每小题小题,每小题 5 分,共分,共 20 分分. 13已知( 2 2) 5的展开式中 x1的系数为40,则实数 a 1 利用通项公式即可得出 ( 2 2) 5的展开式中通项公式:Tk+1= 5(ax)5k( 2 2) =(2)k5 a5kx53k, 令 53k1,解得 k2 x 1 的系数为40,(2)25 2a340, 解得 a1 故答案为:1 本题考查了二项式定理的通项公式考查考生的计算能力,属于基

28、础题 14若函数 f(x)sinx+cosx 在0,a上单调递增,则 a 的取值范围为 (0, 4 由题意利用正弦函数的单调性,求得 a 的范围 函数 f(x)sinx+cosx= 2sin(x+ 4) 在0,a上单调递增,而 x+ 4 4,a+ 4, a+ 4 2,即 0a 4, 故答案为: (0, 4 本题主要考查正弦函数的单调性,属于基础题 15 已知 = (cos, sin) , = (sin, cos) , 且 +100, 则向量与的夹角 10 根据题意,由、的向量坐标计算分析可得|、|以及 的值,结合向量数量积的计 算公式计算可得答案 根据题意, =(cos,sin) , =(si

29、n,cos) , 则| |= 2 + 2 =1,| |= 2 + 2 =1,则 =cossin+sincossin (+)sin100, 则 cos= | | |=sin100,又由 0100, 则 10; 故答案为:10 本题考查向量数量积的坐标计算,涉及三角函数的和角公式,属于基础题 16点 M,N 分别为三棱柱 ABCA1B1C1的棱 BC,BB1的中点,设A1MN 的面积为 S1, 平面 A1MN 截三棱柱 ABCA1B1C1所得截面面积为 S,五棱锥 A1CC1B1NM 的体积为 V1,三棱柱 ABCA1B1C1的体积为 V,则 1 = 7 12 , 1 = 3 5 如图所示,延长

30、NM 交直线 C1C 于点 P,连接 PA1交 AC 于点 Q,连接 QM可得截面为 四边形 A1NMQ由 BB1 CC1,M 为 BC 的中点,可得PCMNBM可得A1MN 的面积 S1= 1 2 1,由 QCA1C1,利用平行线的性质可得1 BMN 的面积与四边形 B1C1BC 面积的关系,五 棱锥A1CC1B1NM 的体积与四棱锥A1B1C1BC的关系, 而三棱锥 A1ABC的体积= 2 3V, 即可得出 1 来源:Zxxk.Com 如图所示,延长 NM 交直线 C1C 于点 P,连接 PA1交 AC 于点 Q,连接 QM平面 A1MN 截三棱柱 ABCA1B1C1所得截面为四边形 A1

31、NMQ BB1CC1,M 为 BC 的中点,则PCMNBM点 M 为 PN 的中点A1MN 的 面积 S1= 1 2 1,QCA1C1, 1 = 1 3 = 1, A1QM 的面积= 2 31, 1 = 3 5 BMN的 面 积 = 1 8 四边形11, 五 棱 锥A1 CC1B1NM的 体 积 为 V1= 7 8 四棱锥1;11,而三棱锥 A1ABC 的体积= 2 3V, 1 = 7 8 2 3 = 7 12 故答案为: 7 12, 3 5 本题考查了空间位置关系、三角形面积之比、三棱锥与四棱锥及其三棱柱的体积考查 了推理能力与计算能力,属于中档题 四、解答题:本题共四、解答题:本题共 6

32、小题,共小题,共 70 分分.解答应写出文字说明、证明过程或演算步骤解答应写出文字说明、证明过程或演算步骤. 17 a5b3+b5, S387a9a10b1+b2这三个条件中任选一个, 补充在下面问题中, 并给出解答 设等差数列an的前 n 项和为 Sn,数列bn的前 n 项和为 Tn,_,a1b6,若对 于任意 nN*都有 Tn2bn1,且 SnSk(k 为常数) ,求正整数 k 的值 注:如果选择多个条件分别解答,那么按第一个解答计分 由 Tn2bn1,结合数列递推式;n1 时,b1T1,n2 时,bnTnTn1,结合等比 数列的定义和通项公式可得 bn,然后选三个条件中一个,结合等差数列

33、的通项公式可得 an,再讨论an的正负项,即可得到所求值 由 Tn2bn1,可得 n1 时,b11;n2 时,Tn12bn11,相减可得 bn2bn2bn 1,即 bn2bn1, 由此可得bn为首项为 1,公比为 2 的等比数列,故 bn2n 1, 当 a5b3+b5,a1b632,a54+1620, 设an的公差为 d,则 2032+4d,解得 d3, 所以 an323(n1)353n因为当 n11 时,an0,当 n11 时,an0, 所以当 n11 时,Sn取得最大值, 因此正整数 k 的值为 11 当 S387 时,a132,3a287, 设an的公差为 d,则 3(32+d)87,解

34、得 d3, 所以 an323(n1)353n因为当 n11 时,an0,当 n11 时,an0, 所以当 n11 时,Sn取得最大值, 因此正整数 k 的值为 11 当 a9a10b1+b2时,a132,a9a103, 设an的公差为 d,则 d3, 所以 an323(n1)353n因为当 n11 时,an0,当 n11 时,an0, 所以当 n11 时,Sn取得最大值, 因此正整数 k 的值为 11 本题考查等差数列和等比数列的定义和通项公式的运用,以及数列递推式的运用,考查 等差数列的前 n 项和的最值情况,考查方程思想和运算能力、推理能力,属于中档题 18在平面四边形 ABCD 中, =

35、 2, = 17, = 45 (1)求ABD 的面积; (2)设 M 为 BD 的中点,且 MCMB,求四边形 ABCD 周长的最大值 (1)连接 BD,在ABD 中,设 BDx,由余弦定理可得 x22x150,解得 x,可得 BD 的值,进而根据三角形的面积公式即可求解 (2)由 M 为 BD 的中点,可得 MC 为BCD 的边 BD 的中线,又 MCMB,可得BCD 90,利用勾股定理可求 BC2+CD2BD225,根据基本不等式可求 BC+CD52, 即可求解四边形 ABCD 的周长的最大值 (1)连接 BD,在ABD 中,由余弦定理可得 AD2AB2+BD22ABBDcosABD, 设

36、 BDx,则 172+x222xcos45,即 x22x150, 解得 x5 或 x3(舍去) , 所以 BD5, 所以 SABD= 1 2ABBDsinABD= 1 2 2 5 2 2 = 5 2 (2)由 M 为 BD 的中点,可得 MC 为BCD 的边 BD 的中线, 又 MCMB,可得 MC= 1 2BD, 所以BCD90, 所以 BC2+CD2BD225, 又(BC+CD)2BC2+CD2+2BCCD2(BC2+CD2)50, 所以 BC+CD52,当且仅当 BCCD 时等号成立, 所以 AB+AD+BC+CD62 + 17,即四边形 ABCD 的周长的最大值为 62 + 17 本题

37、主要考查了余弦定理,三角形的面积公式,勾股定理,基本不等式在解三角形中的 综合应用,考查了转化思想和数形结合思想的应用,属于中档题 19如图,在四边形 ABCD 中,BCCD,BCCD,ADBD,以 BD 为折痕把ABD 折 起,使点 A 到达点 P 的位置,且 PCBC (1)证明:PD平面 BCD; (2)若 M 为 PB 的中点,二面角 PBCD 等于 60,求直线 PC 与平面 MCD 所成角 的正弦值来源:学_科_网 (1)由已知可得 BC平面 PCD,得到 BCPD,再由 PDBD,利用直线与平面垂直 的判定可得 PD平面 BCD; (2) 由 PCBC, CDBC, 可得PCD

38、是二面角 PBCD 的平面角, 则PCD60, 取 BD 的中点 O,连接 OM,OC,可得 OM,OC,OD 两两互相垂直,以 O 为坐标原点, 分别以 OC,OD,OM 所在直线为 x,y,z 轴建立空间直角坐标系,分别求出平面 MCD 的一个法向量 与 的坐标,由两向量所成角的余弦值可得直线 PC 与平面 MCD 所成角 的正弦值 (1)证明:BCCD,BCPC,且 PCCDC, BC平面 PCD, 又PD平面 PCD,BCPD PDBD,BDBCB, PD平面 BCD; (2)解:PCBC,CDBC, PCD 是二面角 PBCD 的平面角,则PCD60, 因此 PDCDtan60= 3

39、, 取 BD 的中点 O,连接 OM,OC, 由已知可得 OM,OC,OD 两两互相垂直, 以 O 为坐标原点,分别以 OC,OD,OM 所在直线为 x,y,z 轴建立空间直角坐标系, 设 OB1,则 P(0,1,6) ,C(1,0,0) ,D(0,1,0) ,M(0,0, 6 2 ) , = (1,1,6), = (1,1,0), = (1,0, 6 2 ) 设平面 MCD 的一个法向量为 = (,), 由 = + = 0 = + 6 2 = 0 ,取 z= 2,得 = (3, 3 ,2) cos , = | | | = 3 4 故直线 PC 与平面 MCD 所成角的正弦值为 3 4 来源:

40、学*科*网Z*X*X*K 本题考查直线与平面垂直的判定,考查空间想象能力与思维能力,训练了利用空间向量 求解空间角,是中档题 20已知椭圆: 2 2 + 2 2 = 1(0)的长轴长为 4,右焦点为 F,且椭圆 C 上的点到点 F 的距离的最小值与最大值的积为 1,圆 O:x2+y21 与 x 轴交于 A,B 两点 (1)求椭圆 C 的方程; (2)动直线 l:ykx+m 与椭圆 C 交于 P,Q 两点,且直线 l 与圆 O 相切,求APQ 的 面积与BPQ 的面积乘积的取值范围 (1)根据题意可得 2a4, (ac) (a+c)1,解得 a,b,进而得椭圆 C 的方程 (2) 联立直线 l

41、与椭圆的方程, 0 且设 P (x1, y1) , Q (x2, y2) , 则 x1+x2= 8 1+42, x1x2= 424 1+42 , 还能得到A, B两点到直线l得距离分别为d1, d2, SAPQSBPQ= 12 162+ 1 2+8 , 由基本不等式可得出答案 (1)设椭圆 C 的焦距为 2c,则由已知得 2a4, (ac) (a+c)1, 解得 a2,b1,所以椭圆 C 的方程为 2 4 + 2= 1 (2)由 = + 2 4 + 2= 1,得(1+4k 2)x2+8kmx+4m240, (8km)24(1+4k2) (4m24)16(1+4k2m2)0, 设 P(x1,y1

42、) ,Q(x2,y2) ,则 x1+x2= 8 1+42,x1x2= 424 1+42 , 所以|PQ|= 1 + 2 (1+ 2)2 412= 1 + 2 ( 8 1+42) 2 4 424 1+42 = 1 + 2 16(1+4 22) (1+42)2 因为直线 l 与 O 相切,所以点 O 到直线 l 得距离 d= | 1+2 =1,即 1+k2m2 所以48k2,由0,得 k20, 又 A,B 两点到直线 l 得距离分别为 d1= |+| 1+2,d 2= | 1+2, 所以APQ 的面积与BPQ 的面积乘积为 SAPQSBPQ= 1 4 (1 + 2 16(1+4 22) (1+42)2 ) |:| 1:2 |;| 1:2 = 4(1+422)|22| (1+42)2 = 4(1+4212)|212| (1+42)2 = 122 (1+42)2 = 12 16