ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:570.50KB ,
资源ID:134979      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-134979.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(第19讲 线段的最值问题-2019年中考数学总复习巅峰冲刺28讲(原卷版))为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

第19讲 线段的最值问题-2019年中考数学总复习巅峰冲刺28讲(原卷版)

1、 20192019 年中考数学总复习巅峰冲刺年中考数学总复习巅峰冲刺 专题专题 1919 线段的最值问题线段的最值问题 【难点突破】着眼思路,方法点拨【难点突破】着眼思路,方法点拨, 疑难突破;疑难突破; 两条动线段的和的最小值问题, 常见的是典型的“牛喝水”问题, 关键是指出一条对称轴“河流” (如图 1) 三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两 条对称轴“反射镜面”(如图 2) 两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最 大值就是第三边的长如图 3,PA 与 PB 的差的最大值就是 AB,

2、此时点 P 在 AB 的延长线上,即 P 解决线段和差的最值问题,有时候求函数的最值更方便,本讲不涉及函数最值问题 【名师原创】原创检测,关注素养,提炼主题;【名师原创】原创检测,关注素养,提炼主题; 【原创】【原创】如图,抛物线 y=ax2+bx+c 与 y 轴交于点 A(0,2),与 x 轴交于一点(-2+ 2 ,0),对称轴为 直线 x=2,抛物线上存在 B、C 两点,点 B 在对称轴左侧,点 C 在对称轴右侧,BC=6 且平行于 x 轴。 (1)求此抛物线的解析式 (2)求ABC 的面积. (3)点 P 在 x 轴负半轴上,且 PA+PB 的最小值为,求点 P 的坐标直线 CP 将线段

3、 AB 分成 1:3 两 部分,试求点 P 的坐标。 【典题精练】典例精讲,运筹帷幄,举一反三;【典题精练】典例精讲,运筹帷幄,举一反三; 【例题【例题 1】如图 1,菱形 ABCD 中,AB2,A120 ,点 P、Q、K 分别为线段 BC、CD、BD 上的任意一 点,求 PKQK 的最小值 图 1 【例题【例题 2】如图 1,已知 A(0, 2)、B(6, 4)、E(a, 0)、F(a1, 0),求 a 为何值时,四边形 ABEF 周长最小?请 说明理由 图 1 【例题【例题 3】在平面直角坐标系中,O 为原点,点 A(2,0) ,点 B(0,2) ,点 E,点 F 分别为 OA,OB 的

4、中点若正方形 OEDF 绕点 O 顺时针旋转,得正方形 OEDF,记旋转角为 ()如图,当 =90时,求 AE,BF的长; ()如图,当 =135时,求证 AE=BF,且 AEBF; ()若直线 AE与直线 BF相交于点 P,求点 P 的纵坐标的最大值(直接写出结果即可) 【最新试题】名校直考,巅峰冲刺,一步到位。【最新试题】名校直考,巅峰冲刺,一步到位。 1. 如图 1,菱形 ABCD 中,A60 ,AB3,A、B 的半径分别为 2 和 1,P、E、F 分别是边 CD、B 和A 上的动点,则 PEPF 的最小值是 图 1 2. 如图,在 RtABC 中,B=90 ,AB=4,BCAB,点 D

5、 在 BC 上,以 AC 为对角线的平行四边形 ADCE 中,DE 的最小值是 3. 如图,如图,M、N 是正方形是正方形 ABCD 的边的边 CD 上的两个动点,满足上的两个动点,满足 AM=BN,连接,连接 AC 交交 BN 于点于点 E,连接,连接 DE 交交 AM 于点于点 F,连接,连接 CF,若正方形的边长为,若正方形的边长为 4,则线段,则线段 CF 的最小值是的最小值是_ 4. 如图 1,ABC 中,ACB90 ,AC2,BC1点 A、C 分别在 x 轴和 y 轴的正半轴上,当点 A 在 x 轴上运动时,点 C 也随之在 y 轴上运动在整个运动过程中,则点 B 到原点的最大距离

6、是 图 1 5. 如图,RtABC 中,ABBC,AB=6,BC=4,P 是ABC 内部的一个动点,且满足PAB=PBC,则 线段 CP 长的最小值为 。 6. 如图,在RtABC中,AB=3,BC=5, P为边BC上一动点,PEAB于E,PFAC于F,Q为EF中点, 则AQ的最小值为 . 7. 如图,将一副直角三角形拼放在一起得到四边形 ABCD,其中BAC45 ,ACD30 ,点 E 为 CD 边上的中点,连接 AE,将ADE 沿 AE 所在直线翻折得到ADE,DE 交 AC 于 F 点若 AB62 cm. (1)AE 的长为_43_cm; (2)试在线段 AC 上确定一点 P,使得 DP

7、EP 的值最小,并求出这个最小值; (3)求点 D到 BC 的距离 8. 几何模型: 条件:如下图,A、B 是直线 l 同旁的两个定点 问题:在直线 l 上确定一点 P,使 PA+PB 的值最小 方法:作点 A 关于直线 l 的对称点 A,连接 AB 交 l 于点 P,则 PA+PB=AB 的值最小(不必 证明) 模型应用: (1) 如图 1,正方形 ABCD 的边长为 2,E 为 AB 的中点,P 是 AC 上一动点连接 BD,由正 方形对称性可知,B 与 D 关于直线 AC 对称连接 ED 交 AC 于 P,则 PB+PE 的最小值是 ; (2)如图 2,O 的半径为 2,点 A、B、C

8、在O 上,OAOB,AOC=60 ,P 是 OB 上一 动点,求 PA+PC 的最小值; (3) 如图 3,AOB=45 ,P 是AOB 内一点,PO=10,Q、R 分别是 OA、OB 上的动点,求 PQR 周长的最小值 9. 如图,在矩形纸片 ABCD 中,AB4,AD12,将矩形纸片折叠,使点 C 落在 AD 边上的点 M 处,折 痕为 PE,此时 PD3. (1)求 MP 的值; (2)在 AB 边上有一个动点 F,且不与点 A,B 重合,当 AF 等于多少时,MEF 的周长最小? (3)若点 G,Q 是 AB 边上的两个动点,且不与点 A,B 重合,GQ2,当四边形 MEQG 周长最小

9、时,求最 小周长值(计算结果保留根号) 10. 如图,抛物线 y=x2+bx+c 与直线 AB 交于 A(4,4) ,B(0,4)两点,直线 AC:y= 1 2 x6 交 y 轴于点 C点 E 是直线 AB 上的动点,过点 E 作 EFx 轴交 AC 于点 F,交抛物线于点 G (1)求抛物线 y=x2+bx+c 的表达式; (2)连接 GB,EO,当四边形 GEOB 是平行四边形时,求点 G 的坐标; (3)在 y 轴上存在一点 H,连接 EH,HF,当点 E 运动到什么位置时,以 A,E,F,H 为顶点的四边形 是矩形?求出此时点 E,H 的坐标; 在的前提下,以点 E 为圆心,EH 长为半径作圆,点 M 为E 上一动点,求 1 2 AM+CM 它的最小值