ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:403.93KB ,
资源ID:13299      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-13299.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019届高三入学调研理科数学试卷(4)(含答案))为本站会员(好样****8)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2019届高三入学调研理科数学试卷(4)(含答案)

1、2019 届 高 三 入 学 调 研 考 试 卷理 科 数 学 ( 四 )注 意 事 项 :1 答 题 前 , 先 将 自 己 的 姓 名 、 准 考 证 号 填 写 在 试 题 卷 和 答 题 卡 上 , 并 将 准 考 证 号 条 形 码 粘贴 在 答 题 卡 上 的 指 定 位 置 。2 选 择 题 的 作 答 : 每 小 题 选 出 答 案 后 , 用 2B 铅 笔 把 答 题 卡 上 对 应 题 目 的 答 案 标 号 涂 黑 ,写 在 试 题 卷 、 草 稿 纸 和 答 题 卡 上 的 非 答 题 区 域 均 无 效 。3 非 选 择 题 的 作 答 : 用 签 字 笔 直 接 答

2、 在 答 题 卡 上 对 应 的 答 题 区 域 内 。 写 在 试 题 卷 、 草 稿 纸和 答 题 卡 上 的 非 答 题 区 域 均 无 效 。4 考 试 结 束 后 , 请 将 本 试 题 卷 和 答 题 卡 一 并 上 交 。一 、 选 择 题 : 本 大 题 共 12 小 题 , 每 小 题 5 分 , 在 每 小 题 给 出 的 四 个 选 项 中 , 只 有一 项 是 符 合 题 目 要 求 的 1已知全集 UR,集合 |Ax, 2|1xB,则 UAB( )A 2xB C 1D 14x【答案】C【解析】由题意得 |102Axxx,25410|4xB或 U, 12UABx故选 C

3、2下列命题错误的是( )A命题“若 0m,则方程 20xm有实数根”的逆否命题为:“若方程 20xm无实数根,则 ”B若 pq为真命题,则 p, q至少有一个为真命题C “ 1x”是“ 230x”的充分不必要条件D若 为假命题,则 , 均为假命题【答案】D【解析】对于 A,利用逆否命题的定义即可判断出 A 正确;对于 B,若 pq为真命题,则 p, q一真一假或 p, q都为真,所以 p, q至少有一个为真命题,B 正确;对于 C,当 1x时, 230x;当 230x得 1x或 2,不一定是 1x“ ”是“ ”的充分不必要条件,C 正确;对于 D,若 pq为假命题,则 p, q至少有一个为假命

4、题,不表示 p, q一定都是假命题,则 D错误故选 D3设 aR,则“ 1a”是直线“ 10axy与直线 250axy垂直”的( )A充要条件 B充分而不必要条件C必要而不充分条件 D既不充分也不必要条件【答案】B【解析】若 1a,则两条直线分别为 10xy、 50xy,两直线斜率的乘积为 ,故两条直线相互垂直;若两条直线相互垂直,则 2a,故 a或 2,故“ 1a”是两条直线相互垂直的充分不必要条件,选 B4已知函数 5log,02xf,则 125f( )A4 B 14C 4D 14【答案】B【解析】 51log22f, 11254ff,故选 B5已知 :p函数 fxa在 ,上是增函数, :

5、q函数 0,1xfa是减函数,则是 q的( )A必要不充分条件 B充分不必要条件C充要条件 D既不充分也不必要条件【答案】A【解析】 函数 fxa在 2,上是增函数, 2a;函数 0,1fa是减函数, 01,qp, q,即 p是 的必要不充分条件,故选 A6若 2log., 02b, 0.2log3c,则下列结论正确的是( )A cbaB aC abcD bca【答案】D【解析】因为 2log0., 021b, 02log31 c,所以 c,故选 D7函数 2lxy的零点在区间( )内A 1,43B 1,35C 21,5D 12,3【答案】C【解析】令 2logxf,则函数在 0,递增,则 2

6、10f,25l0f, 函数 2logxy的零点在区间 ,5,故选 C8过点 e,作曲线 ex的切线,则切线方程为( )A 21yxB 2e1yxC ee D e1【答案】C【解析】由 exy,得 e1xy,设切点为 ,则 01exy,0,e-x切线方程为 ,000切线过点 e,, ,解得: 0e1x0e=xx切线方程为 ,整理得: e2yx故选 C11y9若函数 32fxkxk在区间 0,4上是减函数,则 k的取值范围是( )A 1,3B 10,3C 10,3D 1,3【答案】D【解析】 261fxkx, 函数 321fxkxk在区间 0,4上是减函数,30f在区间 ,4上恒成立,即 在 ,上

7、恒成立,又2gx在 ,4上单调递减, min243gx,故 k故选 D10已知函数231xaf是定义在 R上的奇函数,且函数 xag在 0,上单调递增,则实数 a的值为( )A 1B 2C1 D2【答案】A【解析】 函数 231xaf是定义在 R上的奇函数, 函数 210af,则 1a,若函数 gx在 0,上单调递增,则 , ,故选 A11若函数 21fxa有两个零点,则实数 a的取值范围是( )A 10,2B 0,C 1,2D 1,【答案】A【解析】由题意可得 210fxa,即21a,函数 21fxa有两个零点,则函数2y与 y的图象有两个交点,作出图象,如图所示:则 021a,即 102a

8、故选 A12已知偶函数 fx的导函数为 fx,且满足 10f,当 x时, 2fxf,则使得 0fx成立的 的取值范围是( )A ,1,B ,1,C ,0,D ,0,【答案】D【解析】根据题意,设函数 2fxg,当 时, 32 0fxfxg,所以函数 gx在 0,上单调递减,又 f为偶函数,所以 gx为偶函数,又 10f,所以 10g,故 gx在 的函数值大于零,1,0,即 f在 的函数值大于零故选 D,二 、 填 空 题 : 本 大 题 共 4 小 题 , 每 小 题 5 分 13集合 10xA, Bxba,若“ 1”是“ AB”的充分条件,则实数b取值范围是_【答案】 2,【解析】 1,A,

9、当 a时, 1,Bb,因为“ a”是“ ”的充分条件,所以 1 b, 2b故填 2,14不等式231xx的解集是_【答案】 ,【解析】原不等式可以化为 23x,所以 230x,故 1x或者 3x,不等式的解集为 ,1,,故填 ,1,15若函数 的值域为 R,则 a的取值范围是_4log,2xaf【答案】 32a【解析】 4logfx,在 2x的值域 1,,要使值域为 R, xa最大值必须大于等于 12,即满足 12a,解得: 3a故答案为 32a16设函数 25fxx,若存在唯一的正整数 0x,使得 0fx,则 a的取值范围是_【答案】 15,34【解析】设 325gx, 1hxa,则 236

10、2gxx,当 02时, 0,当 或 2时, 0,gx在 ,, ,上单调递增,在 0,上单调递减,当 2时, gx取得极小值 21g,作出 与 h的函数图象如图:显然当 0a时, gxh在 0,上恒成立,即 0fxghx无正整数解,要使存在唯一的正整数 ,使得 f,显然 02x,123gh,即32154a,解得 1534a故答案为 15,34三 、 解 答 题 : 本 大 题 共 6 小 题 , 共 70 分 , 解 答 应 写 出 文 字 说 明 , 证 明 过 程 或 演 算步 骤 17 (10 分)已知集合 1284 xA, 21log,38Byx(1)若 Cxm, CA,求实数 m的取值

11、范围;(2)若 61D,且 BD,求实数 的取值范围【答案】 (1) 3;(2) 【解析】 (1) 7Ax, 3|5y25ABx,若 C,则 1m, 2m;若 ,则215 3;综上 3(2) 37|ABx, 617m, 118 (12 分)设 p:实数 x满足 30ax, q:实数 x满足 302(1)当 a时,若 q为真,求实数 的取值范围;(2)当 0时,若 是 的必要条件,求实数 a的取值范围【答案】 (1) ,32,;(2) ,1【解析】 (1)当 a时, p: 13x, q: 3x或 2因为 pq为真,所以 , q中至少有一个真命题所以 3x或 或 2,所以 或 ,所以实数 的取值范

12、围是 ,3,(2)当 0a时, p: ax,由 02得: q: 3x或 2,所以 q: 32x,因为 p是 的必要条件,所以 3xxa,所以 32a,解得 1a,所以实数 的取值范围是 2,119 (12 分)计算:(1) 401324.5;(2) 23lg52l0.1log9l【答案】 (1) 3;(2) 【解析】 (1)原式 44123(2)原式1132 2223 loglg5lg0lolgl50l2321l10220 (12 分)函数 afx的定义域为 0,1aR(1)当 1a时,求函数 yfx的值域;(2)若函数 yfx在定义域上是减函数,求 a的取值范围;(3)求函数 f在定义域上的

13、最大值及最小值,并求出函数取最值时 x的值【答案】 (1) 2,;(2) ,2;(3)见解析【解析】 (1)函数 1=yfx,所以函数 yfx的值域为 2,(2)若函数 f在定义域上是减函数,则任取 1, 20,且 1x都有 12ffx成立,即 1212+0axx,只要 12ax即可,由 1x, 2,,故 12,0,所以a,故 的取值范围是 ,;(3)当 0时,函数 yfx在 0,1上单调增,无最小值,当 1x时取得最大值 2a;由(2)得当 2a时, f在 ,上单调减,无最大值,当 时取得最小值 ;当0时,函数 yfx在 20,a上单调减,在 2,1a上单调增,无最大值,当 2x时取得最小值

14、 2a21 (12 分)已知函数 2lnfxa(1)若函数 f在点 3,处切线的斜率为 4,求实数 a的值;(2)求函数 fx的单调区间;(3)若函数 21ln2agxfx在 1,4上是减函数,求实数 a的取值范围【答案】 (1)6;(2)单调递减区间是 0,a,单调递增区间是 2,;(3) 7,【解析】 (1) 2afx,而 34f,即 234a,解得 6a(2)函数 fx的定义域为 0,当 0a时, f, fx的单调递增区间为 0,;当 0a时, 22axaxfx 当 x变化时, f, f的变化情况如下:由此可知,函数 fx的单调递减区间是 20,a,单调递增区间是 2,a(3) 21ln

15、ga,于是 211xgx因为函数 x在 ,4上是减函数,所以 0在 ,4上恒成立,即210a在 ,上恒成立又因为函数 gx的定义域为 0,,所以有 210ax在 ,4上恒成立于是有 21a,设 1tx,则 14,所以有 21tt, x,当 4t时, t有最大值 76,于是要使 0gx在 ,4上恒成立,只需 716a,即实数 a的取值范围是 ,122 (12 分)设函数 432fxxbR,其中 a, bR(1)当 03a时,讨论函数 f的单调性;(2)若函数 fx仅在 处有极值,求 a的取值范围;(3)若对于任意的 2,a,不等式 1fx在 ,上恒成立,求 b的取值范围【答案】 (1) fx在

16、10,2, ,内是增函数,在 ,0, 1,2内是减函数;(2) 8,3;(3) ,4【解析】 (1) 32243fxaxxa 当 03a时, 4101f 令 fx,解得 1x, 2, 32x当 变化时, f, f的变化情况如下表:所以 fx在 10,2, ,内是增函数,在 ,0, 1,2内是减函数(2) 43fax,显然 x不是方程 430xa的根为使 fx仅在 0处有极值,必须 2430a恒成立,即有 29640a解此不等式,得 83a这时, fb是唯一极值因此满足条件的 的取值范围是 8,3(3)由条件 2,a可知 29640a,从而 2430xa恒成立当 0x时, 0fx;当 x时, fx因此函数 f在 1,上的最大值是 1f与 f两者中的较大者为使对任意的 2,a不等式 fx在 ,上恒成立,当且仅当 1f,即 b,在 ,上恒成立,所以 4b,因此满足条件的 的取值范围是 ,4b