ImageVerifierCode 换一换
格式:DOCX , 页数:23 ,大小:246.63KB ,
资源ID:132301      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-132301.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020年湖南省长沙市中考数学模拟试卷含解析版)为本站会员(牛***)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2020年湖南省长沙市中考数学模拟试卷含解析版

1、第 1 页,共 23 页 绝密启用前绝密启用前 2020 年湖南省长沙市中考数学模拟试卷年湖南省长沙市中考数学模拟试卷 注意事项: 1答题前填写好自己的姓名、班级、考号等信息 2请将答案正确填写在答题卡上,在试卷上作答无效,选择题需使用 2B 铅笔填涂 一、选择题(本大题共 12 小题,共 36.0 分) 1. 下列各数中,比-3小的数是( ) A. 5 B. 1 C. 0 D. 1 2. 根据长沙市电网供电能力提升三年行动计划,明确到 2020年,长沙电网建设 改造投资规模达到 15000000000 元,确保安全供用电需求数据 15000000000用科 学记数法表示为( ) A. 15

2、109 B. 1.5 109 C. 1.5 1010 D. 0.15 1011 3. 下列计算正确的是( ) A. 3 + 2 = 5 B. (3)2= 6 C. 6 3= 2 D. ( + )2= 2+ 2 4. 下列事件中,是必然事件的是( ) A. 购买一张彩票,中奖 B. 射击运动员射击一次,命中靶心 C. 经过有交通信号灯的路口,遇到红灯 D. 任意画一个三角形,其内角和是180 5. 如图,平行线 AB,CD被直线 AE 所截,1=80 ,则2的度数 是( ) A. 80 B. 90 C. 100 D. 110 6. 某个几何体的三视图如图所示,该几何体是( ) A. B. C.

3、第 2 页,共 23 页 D. 7. 在庆祝新中国成立 70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按 照成绩取前 5名进入决赛 如果小明知道了自己的比赛成绩, 要判断能否进入决赛, 小明需要知道这 11 名同学成绩的( ) A. 平均数 B. 中位数 C. 众数 D. 方差 8. 一个扇形的半径为 6,圆心角为 120 ,则该扇形的面积是( ) A. 2 B. 4 C. 12 D. 24 9. 如图,RtABC中,C=90 ,B=30 ,分别以点 A和点 B 为圆心,大于1 2AB的长 为半径作弧, 两弧相交于 M、 N两点, 作直线 MN, 交 BC于点 D, 连接 AD, 则

4、CAD 的度数是( ) A. 20 B. 30 C. 45 D. 60 10. 如图,一艘轮船从位于灯塔 C 的北偏东 60 方向,距离灯塔 60nmile的小岛 A出发, 沿正南方向航行一段时间后,到达位于灯塔 C 的南偏东 45 方向上的 B 处,这时轮 船 B 与小岛 A的距离是( ) A. 303 B. 60nmile C. 120nmile D. (30 + 303) 11. 孙子算经是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不 知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺木长几何?”意思是: 用一根绳子去量一根木头的长、绳子还剩余 4.5 尺;将绳子对折再量木

5、头,则木头 还剩余 1尺,问木头长多少尺?可设木头长为 x尺,绳子长为 y尺,则所列方程组 正确的是( ) A. 0.5 = 1 =+4.5 B. = 2 1 =+4.5 C. 0.5 = + 1 =4.5 D. = 2 1 =4.5 12. 如图, ABC 中,AB=AC=10,tanA=2, BEAC 于点 E, D是线段 BE上的一个动点,则 CD+ 5 5 BD 的最小值是 ( ) 第 3 页,共 23 页 A. 25 B. 45 C. 53 D. 10 二、填空题(本大题共 6 小题,共 18.0 分) 13. 式子 5在实数范围内有意义,则实数 x 的取值范围是_ 14. 分解因式

6、:am2-9a=_ 15. 不等式组3 6 0 +10 的解集是_ 16. 在一个不透明的袋子中有若干个小球,这些球除颜色外无其他差别,从袋中随机摸 出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断 重复上述过程以下是利用计算机模拟的摸球试验统计表: 摸球实验次数 100 1000 5000 1000 0 5000 0 10000 0 “摸出黑球”的次数 36 387 2019 4009 1997 0 40008 “摸出黑球”的频率(结果保留小数点后三 位) 0.36 0 0.38 7 0.40 4 0.401 0.399 0.400 根据试验所得数据, 估计“摸出黑球

7、”的概率是_ (结果保留小数点后一位) 17. 如图,要测量池塘两岸相对的 A,B两点间的距离,可以在池 塘外选一点 C,连接 AC,BC,分别取 AC,BC的中点 D,E, 测得 DE=50m,则 AB的长是_m 18. 如图,函数 y= (k为常数,k0)的图象与过原点的 O 的直线相交于 A,B两点, 点 M是第一象限内双曲线上的动点(点 M 在点 A 的左侧),直线 AM分别交 x轴, y 轴于 C,D两点,连接 BM 分别交 x 轴,y轴于点 E,F现有以下四个结论: ODM与OCA 的面积相等;若 BMAM 于点 M,则MBA=30 ;若 M点的 横坐标为 1,OAM为等边三角形,

8、则 k=2+3;若 MF=2 5MB,则 MD=2MA 其中正确的结论的序号是_(只填序号) 三、计算题(本大题共 1 小题,共 6.0 分) 第 4 页,共 23 页 19. 先化简,再求值:(+3 1- 1 1) 2+4+4 2 ,其中 a=3 四、解答题(本大题共 7 小题,共 60.0 分) 20. 计算:|-2|+(1 2) -1- 6 3 -2cos60 21. 某学校开展了主题为“垃圾分类,绿色生活新时尚”的宣传活动为了解学生对垃 圾分类知识的掌握情况, 该校环保社团成员在校园内随机抽取了部分学生进行问卷 调查,将他们的得分按优秀、良好、合格、待合格四个等级进行统计,并绘制了如

9、下不完整的统计表和条形统计图 等级 频数 频率 优秀 21 42% 良好 m 40% 合格 6 n% 待合格 3 6% (1)本次调查随机抽取了_名学生;表中 m=_,n=_; (2)补全条形统计图; (3)若全校有 2000 名学生,请你估计该校掌握垃圾分类知识达到“优秀”和“良 好”等级的学生共有多少人 第 5 页,共 23 页 22. 如图, 正方形 ABCD, 点 E, F 分别在 AD, CD 上, 且 DE=CF, AF 与 BE 相交于点 G (1)求证:BE=AF; (2)若 AB=4,DE=1,求 AG 的长 23. 近日,长沙市教育局出台长沙市中小学教师志愿辅导工作实施意见

10、,鼓励教师 参与志愿辅导,某区率先示范,推出名师公益大课堂,为学生提供线上线下免费辅 导, 据统计, 第一批公益课受益学生 2 万人次, 第三批公益课受益学生 2.42 万人次 (1)如果第二批,第三批公益课受益学生人次的增长率相同,求这个增长率; (2)按照这个增长率,预计第四批公益课受益学生将达到多少万人次? 24. 根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫 做相似四边形相似四边形对应边的比叫做相似比 (1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正 确(直接在横线上填写“真”或“假”) 四条边成比例的两个凸四边形相似;(_命题) 三

11、个角分别相等的两个凸四边形相似;(_命题) 两个大小不同的正方形相似(_命题) (2)如图 1,在四边形 ABCD和四边形 A1B1C1D1中,ABC=A1B1C1, BCD=B1C1D1, 11= 11= 11求证:四边形 ABCD与四边形 A1B1C1D1相似 (3)如图 2,四边形 ABCD中,ABCD,AC与 BD相交于点 O,过点 O作 EFAB 分别交 AD,BC于点 E,F记四边形 ABFE的面积为 S1,四边形 EFCD 的面积为 S2,若四边形 ABFE与四边形 EFCD相似,求 2 1的值 第 6 页,共 23 页 25. 已知抛物线 y=-2x2+(b-2)x+(c-20

12、20)(b,c为常数) (1)若抛物线的顶点坐标为(1,1),求 b,c 的值; (2)若抛物线上始终存在不重合的两点关于原点对称,求 c的取值范围; (3) 在 (1) 的条件下, 存在正实数 m, n (mn) , 当 mxn 时, 恰好 2+1 1 +2 2+1, 求 m,n 的值 26. 如图,抛物线 y=ax2+6ax(a 为常数,a0)与 x轴交于 O,A两点,点 B 为抛物线 的顶点,点 D的坐标为(t,0)(-3t0),连接 BD 并延长与过 O,A,B三点 的P相交于点 C (1)求点 A的坐标; (2)过点 C作P 的切线 CE 交 x 轴于点 E 如图 1,求证:CE=D

13、E; 如图 2,连接 AC,BE,BO,当 a= 3 3 ,CAE=OBE时,求 1 - 1 的值 第 7 页,共 23 页 第 8 页,共 23 页 答案和解析答案和解析 1.【答案】A 【解析】 解:-5-3-101, 所以比-3小的数是-5, 故选:A 有理数大小比较的法则:正数都大于 0;负数都小于 0;正数大于一切 负数;两个负数,绝对值大的其值反而小,据此判断即可 此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要 明确:正数都大于 0;负数都小于 0;正数大于一切负数;两个负数, 绝对值大的其值反而小 2.【答案】C 【解析】 解:数据 150 00000000

14、用科学记数法表示为 1.5 1010 故选:C 科学记数法的表示形式为 a 10n的形式,其中 1|a|10,n 为整数确定 n 的 值时,要看把原数变成 a时,小数点移动了多少位,n的绝对值与小数点移动 的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n 是负 数 此题考查科学记数法的表示方法科学记数法的表示形式为a 10n的形式,其 中 1|a|10,n为整数,表示时关键要正确确定 a的值以及 n的值 3.【答案】B 【解析】 解:A、3a与 2b不是同类项,故不能合并,故选项 A不合题意; B、(a3)2=a6,故选项 B 符合题意; C、a6 a3=a3,故选项 C 不符合题

15、意; D、(a+b)2=a2+2ab+b2,故选项 D不合题意 故选:B 第 9 页,共 23 页 分别根据合并同类项的法则、同底数幂的除法法则、幂的乘方法则以及完全 平方公式解答即可 本题主要考查了幂的运算性质、合并同类项的法则以及完全平方公式,熟练 掌握运算法则是解答本题的关键 4.【答案】D 【解析】 解:A购买一张彩票中奖,属于随机事件,不合题意; B射击运动员射击一次,命中靶心,属于随机事件,不合题意; C经过有交通信号灯的路口,遇到红灯,属于随机事件,不合题意; D任意画一个三角形,其内角和是 180 ,属于必然事件,符合题意; 故选:D 先能肯定它一定会发生的事件称为必然事件,事

16、先能肯定它一定不会发生的 事件称为不可能事件,必然事件和不可能事件都是确定的 本题主要考查了必然事件,事先能肯定它一定会发生的事件称为必然事件 5.【答案】C 【解析】 解:1=80 , 3=100 , ABCD, 2=3=100 故选:C 直接利用邻补角的定义结合平行线的性质得出答案 此题主要考查了平行线的性质以及邻补角的定义,正确掌握平行线的性质是 解题关键 6.【答案】D 【解析】 解:由三视图可知:该几何体为圆锥 故选:D 根据几何体的三视图判断即可 第 10 页,共 23 页 考查了由三视图判断几何体的知识,解题的关键是具有较强的空间想象能 力,难度不大 7.【答案】B 【解析】 解

17、:11个不同的成绩按从小到大排序后,中位数及中位数之后的共有 5 个数, 故只要知道自己的成绩和中位数就可以知道是否进入决赛了 故选:B 由于比赛取前 5名参加决赛,共有 11名选手参加,根据中位数的意义分析即 可 本题考查了中位数意义解题的关键是正确的求出这组数据的中位数 8.【答案】C 【解析】 解:S=12, 故选:C 根据扇形的面积公式 S=计算即可 本题考查的是扇形面积的计算,掌握扇形的面积公式 S=是解题的关 键 9.【答案】B 【解析】 解:在ABC 中,B=30 ,C=90 , BAC=180 -B-C=60 , 由作图可知 MN为 AB 的中垂线, DA=DB, DAB=B=

18、30 , CAD=BAC-DAB=30 , 故选:B 根据内角和定理求得BAC=60 ,由中垂线性质知 DA=DB,即 DAB=B=30 ,从而得出答案 本题主要考查作图-基本作图,熟练掌握中垂线的作图和性质是解题的关键 10.【答案】D 【解析】 第 11 页,共 23 页 解:过 C 作 CDAB于 D点, ACD=30 ,BCD=45 ,AC=60 在 RtACD中,cosACD=, CD=ACcosACD=60=30 在 RtDCB中,BCD=B=45 , CD=BD=30, AB=AD+BD=30+30 答:此时轮船所在的 B 处与灯塔 P 的距离是(30+30)nmile 故选:D

19、 过点 C 作 CDAB,则在 RtACD中易得 AD 的长,再在直角BCD 中求出 BD,相加可得 AB的长 此题主要考查了解直角三角形的应用-方向角问题,求三角形的边或高的问 题一般可以转化为解直角三角形的问题,解决的方法就是作高线 11.【答案】A 【解析】 解:由题意可得, , 故选:A 根据题意可以列出相应的方程组,本题得以解决 本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意, 列出相应的方程组 12.【答案】B 【解析】 解:如图,作 DHAB 于 H,CMAB于 M BEAC, 第 12 页,共 23 页 ABE=90 , tanA=2,设 AE=a,BE=2a

20、, 则有:100=a2+4a2 , a 2=20, a=2或-2 (舍弃), BE=2a=4, AB=AC,BEAC,CMAC, CM=BE=4(等腰三角形两腰上的高相等) DBH=ABE,BHD=BEA, sinDBH=, DH=BD, CD+BD=CD+DH, CD+DHCM, CD+BD4 , CD+BD的最小值为 4 故选:B 如图,作 DHAB于 H,CMAB于 M由 tanA=2,设 AE=a,BE=2a,利 用勾股定理构建方程求出a,再证明DH=BD,推出CD+BD=CD+DH, 由垂线段最短即可解决问题 本题考查解直角三角形,等腰三角形的性质,垂线段最短等知识,解题的关 键是学

21、会添加常用辅助线,用转化的思想思考问题,属于中考常考题型 13.【答案】x5 【解析】 解:式子在实数范围内有意义,则 x-50, 故实数 x 的取值范围是:x5 故答案为:x5 直接利用二次根式有意义的条件进而得出答案 此题主要考查了二次根式有意义的条件,正确把握相关定义是解题关键 第 13 页,共 23 页 14.【答案】a(m+3)(m-3) 【解析】 解:am2-9a =a(m2-9) =a(m+3)(m-3) 故答案为:a(m+3)(m-3) 先提取公因式 a,再对余下的多项式利用平方差公式继续分解 本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先 提取公因式,然后

22、再用其他方法进行因式分解,同时因式分解要彻底,直到 不能分解为止 15.【答案】-1x2 【解析】 解: 解不等式得:x-1, 解不等式得:x2, 不等式组的解集为:-1x2, 故答案为:-1x2 分别求出每一个不等式的解集,根据口诀:大小小大中间找,确定不等式组的 解集 本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟 知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此 题的关键 16.【答案】0.4 【解析】 观察表格发现随着摸球次数的增多频率逐渐稳定在 0.4附近, 故摸到白球的频率估计值为 0.4; 故答案为:0.4 大量重复试验下摸球的频率可以估

23、计摸球的概率,据此求解; 第 14 页,共 23 页 本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某 个事件发生的频率能估计概率 17.【答案】100 【解析】 解:点 D,E分别是 AC,BC 的中点, DE是ABC 的中位线, AB=2DE=2 50=100 米 故答案为:100 先判断出 DE是ABC 的中位线,再根据三角形的中位线平行于第三边并且 等于第三边的一半可得 AB=2DE,问题得解 本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理 并准确识图是解题的关键 18.【答案】 【解析】 解:设点 A(m,),M(n,), 则直线 AC 的解析式

24、为 y=-x+ , C(m+n,0),D(0,), S ODM= n=,SOCA=(m+n)= , ODM 与OCA 的面积相等,故正确; 反比例函数与正比例函数关于原点对称, O是 AB的中点, BMAM, OM=OA, k=mn, A(m,n),M(n,m), AM=(n-m),OM= , AM 不一定等于 OM, BAM不一定是 60 , MBA不一定是 30 故错误, M 点的横坐标为 1, 第 15 页,共 23 页 可以假设 M(1,k), OAM 为等边三角形, OA=OM=AM, 1+k2=m2+ , m=k, OM=AM, (1-m)2+=1+k2, k 2-4k+1=0,

25、k=2, m1, k=2+,故正确, 如图,作 MKOD 交 OA于 K OFMK, = , = , OA=OB, = , = , KMOD, =2, DM=2AM,故正确 故答案为 设点A(m,),M(n,),构建一次函数求出C,D坐标,利用三角形的面 积公式计算即可判断 OMA不一定是等边三角形,故结论不一定成立 设 M(1,k),由OAM 为等边三角形,推出 OA=OM=AM,可得 1+k2=m2+ ,推出 m=k,根据 OM=AM,构建方程求出 k即可判断 如图,作 MKOD 交 OA于 K利用平行线分线段成比例定理解决问题即 可 第 16 页,共 23 页 本题考查反比例函数与一次函

26、数的交点问题,三角形的面积,平行线分线段 成比例定理等知识,解题的关键是学会利用参数解决问题,学会构造平行 线,利用平行线分线段成比例定理解决问题,属于中考填空题中的压轴题 19.【答案】解:原式=+2 1 (1) (+2)2 = +2, 当 a=3时,原式= 3 3+2= 3 5 【解析】 先根据分式混合运算的法则把原式进行化简,再将 a的值代入进行计算即 可 本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关 键 20.【答案】解:原式=2+2-6 3-2 1 2 =2+2-2-1 =1 【解析】 根据绝对值的意义、二次根式的除法法则、负整数指数幂的意义和特殊角的 三角函数值

27、进行计算 本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进 行二次根式的乘除运算,再合并即可在二次根式的混合运算中,如能结合 题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功 倍 21.【答案】50 20 12 【解析】 解:(1)本次调查随 机抽取了 21 42%=50名学 生, m=50 40%=20,n= 100=12, 第 17 页,共 23 页 故答案为:50,20,12; (2)补全条形统计图如图所示; (3)2000=1640 人, 答:该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有 1640 人 (1)用优秀的人数除以优秀的人数所占

28、的百分比即可得到总人数; (2)根据题意补全条形统计图即可得到结果; (3)全校 2000名乘以“优秀”和“良好”等级的学生数所占的百分比即可得到结 论 本题考查的是条形统计图,读懂统计图,从统计图中得到必要的信息是解决 问题的关键条形统计图能清楚地表示出每个项目的数据 22.【答案】(1)证明:四边形 ABCD是正方形, BAE=ADF=90 ,AB=AD=CD, DE=CF, AE=DF, 在BAE和ADF 中, = = = , BAEADF(SAS), BE=AF; (2)解:由(1)得:BAEADF, EBA=FAD, GAE+AEG=90 , AGE=90 , AB=4,DE=1,

29、AE=3, BE=2+ 2=42+ 32=5, 在 RtABE 中,1 2AB AE= 1 2BE AG, AG=43 5 =12 5 【解析】 (1)由正方形的性质得出BAE=ADF=90 ,AB=AD=CD,得出 AE=DF,由 SAS 证明BAEADF,即可得出结论; (2)由全等三角形的性质得出EBA=FAD,得出GAE+AEG=90 ,因此 第 18 页,共 23 页 AGE=90 ,由勾股定理得出 BE=5,在 RtABE中,由三角形 面积即可得出结果 本题考查了全等三角形的判定与性质、正方形的性质、勾股定理以及三角形 面积公式;熟练掌握正方形的性质,证明三角形全等是解题的关键 2

30、3.【答案】解:(1)设增长率为 x,根据题意,得 2(1+x)2=2.42, 解得 x1=-2.1(舍去),x2=0.1=10% 答:增长率为 10% (2)2.42(1+0.1)=2.662(万人) 答:第四批公益课受益学生将达到 2.662 万人次 【解析】 (1)设增长率为 x,根据“第一批公益课受益学生 2万人次,第三批公益课受益 学生 2.42万人次”可列方程求解; (2)用 2.42 (1+增长率),计算即可求解 本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目 给出的条件,找出合适的等量关系,列出方程,再求解 24.【答案】假 假 真 【解析】 (1)解:四条

31、边成比例的两个凸四边形相似,是假命题,角不一定相等 三个角分别相等的两个凸四边形相似,是假命题,边不一定成比例 两个大小不同的正方形相似是真命题 故答案为假,假,真 (2)证明:如图 1中,连接 BD,B1D1 第 19 页,共 23 页 BCD=B1C1D1,且= , BCDB1C1D1, CDB=C1D1B1,C1B1D1=CBD, = , = , ABC=A1B1C1, ABD=A1B1D1, ABDA1B1D1, =,A=A1,ADB=A1D1B1 , ,=,ADC=A1D1C1,A=A1, ABC=A1B1C1,BCD=B1C1D1, 四边形 ABCD与四边形 A1B1C1D1相似

32、(3)如图 2中, 四边形 ABCD与四边形 EFCD相似 = , EF=OE+OF, = , EFABCD, =,= , +=+ , 第 20 页,共 23 页 = , AD=DE+AE, = , 2AE=DE+AE, AE=DE, =1 (1)根据相似多边形的定义即可判断 (2)根据相似多边形的定义证明四边成比例,四个角相等即可 (3)四边形 ABFE 与四边形 EFCD相似,证明相似比是 1即可解决问题,即证 明 DE=AE即可 本题属于相似形综合题,考查了相似三角形的判定和性质,相似多边形的判 定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考压轴 题 25.【答案】解:(

33、1)由题可知,抛物线解析式是:y=-2(x-1)2+1=-2x2+4x-1 2020 = 1 2=4 b=6,c=2019 (2)设抛物线线上关于原点对称且不重合的两点坐标分别是(x0,y0),(-x0,-y0), 代入解析式可得: 0= 20 2 ( 2)0+ ( 2020) 0=20 2+(2)0+(2020) 两式相加可得:-4x02+2(c-2020)=0 c=2x02+2020, c2020; (3)由(1)可知抛物线为 y=-2x2+4x-1=-2(x-1)2+1 y1 0mn,当 mxn 时,恰好 2+1 1 +2 2+1, 1 1 +2 1 1 1 1 1,即 m1 1mn 抛

34、物线的对称轴是 x=1,且开口向下, 当 mxn时,y 随 x 的增大而减小 当 x=m时,y最大值=-2m2+4m-1 第 21 页,共 23 页 当 x=n时,y最小值=-2n2+4n-1 又1 1 , 1 = 22+ 4 1 1 = 22+ 4 1 将整理,得 2n3-4n2+n+1=0, 变形,得 2n2(n-1)-(2n+1)(n-1)=0 (n-1)(2n2-2n-1)=0 n1, 2n2-2n-1=0 解得 n1=13 2 (舍去),n2=1+3 2 同理,由得到:(m-1)(2m2-2m-1)=0 1mn, 2m2-2m-1=0 解得 m1=1,m2=13 2 (舍去),m3=

35、1+3 2 (舍去) 综上所述,m=1,n=1+3 2 【解析】 (1)利用抛物线的顶点坐标和二次函数解析式 y=-2x2+(b-2)x+(c-2020)可知, y=-2(x-1)2+1,易得 b、c的值; (2)设抛物线线上关于原点对称且不重合的两点坐标分别是(x0,y0),(-x0, -y0),代入函数解析式,经过化简得到 c=2x02+2020,易得 c2020; (3)由题意知,抛物线为 y=-2x2+4x-1=-2(x-1)2+1,则 y1利用不等式的性质 推知:,易得 1mn由二次函数图象的性质得到:当 x=m 时,y 最 大值=-2m 2+4m-1当 x=n 时,y 最小值=-2

36、n 2+4n-1所以 =-2m2+4m-1, =-2n2+4n-1通过解方程求得 m、n的值 主要考查了二次函数综合题,解答该题时,需要熟悉二次函数图象上点的坐 标特征,二次函数图象的对称性,二次函数图象的增减性,二次函数最值的 意义以及一元二次方程的解法该题计算量比较大,需要细心解答难度较 大 26.【答案】解:(1)令 ax2+6ax=0, ax(x+6)=0, A(-6,0); 第 22 页,共 23 页 (2)证明:如图,连接 PC,连接 PB 延长交 x轴于点 M, P 过 O、A、B 三点,B为顶点, PMOA,PBC+BOM=90 , 又PC=PB, PCB=PBC, CE为切线

37、, PCB+ECD=90 , 又BDP=CDE, ECD=COE, CE=DE 解:设 OE=m,即 E(m,0), 由切割线定理得:CE2=OEAE, (m-t)2=m(m+6), = 2 6+2, CAE=CBD, CAE=OBE,CBO=EBO, 由角平分线定理: = , 即: (3+)2+27 (3+)2+27 = , = 6 6, 由得 2 6+2 = 6 6, 整理得:t2+18t+36=0, t 2=-18t-36, 1 1 = 1 1 = 3+6 2 = 1 6 【解析】 (1)令 y=0,可得 ax(x+6)=0,则 A点坐标可求出; (2)连接 PC,连接 PB延长交 x 轴于点 M,由切线的性质可证得 ECD=COE,则 CE=DE; 设 OE=m,由 CE2=OEAE,可得,由CAE=OBE可得 第 23 页,共 23 页 ,则 ,综合整理代入可求出的值 本题是二次函数与圆的综合问题,涉及二次函数图象与 x 轴的交点坐标、切 线的性质、等腰三角形的判定、切割线定理等知识把圆的知识镶嵌其中,会 灵活运用圆的性质进行计算是解题的关键