ImageVerifierCode 换一换
格式:DOCX , 页数:22 ,大小:225.13KB ,
资源ID:132214      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-132214.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020年四川省巴中市中考数学模拟试卷含解析版)为本站会员(牛***)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2020年四川省巴中市中考数学模拟试卷含解析版

1、第 1 页,共 22 页 绝密启用前绝密启用前 2020 年四川省巴中市中考数学模拟试卷年四川省巴中市中考数学模拟试卷 注意事项: 1答题前填写好自己的姓名、班级、考号等信息 2请将答案正确填写在答题卡上,在试卷上作答无效,选择题需使用 2B 铅笔填涂 一、选择题(本大题共 10 小题,共 40.0 分) 1. 下列四个算式中,正确的是( ) A. + = 2 B. 5 4= 2 C. (5)4= 9 D. 5 4= 2. 在平面直角坐标系中,已知点 A(-4,3)与点 B 关于原点对称,则点 B的坐标为 ( ) A. (4,3) B. (4,3) C. (4,3) D. (4,3) 3. 企

2、业家陈某,在家乡投资 9300万元,建立产业园区 2万余亩将 9300万元用科学 记数法表示为( ) A. 93 108元 B. 9.3 108元 C. 9.3 107元 D. 0.93 108元 4. 如图是由一些小立方体与圆锥组合成的立体图形, 它的主视图 是( ) A. B. C. D. 5. 已知关于 x、 y 的二元一次方程组3 + = 4 ;4 的解是 = 2 2 , 则 a+b 的值是 ( ) A. 1 B. 2 C. 1 D. 0 6. 下列命题是真命题的是( ) A. 对角线相等的四边形是矩形 B. 对角线互相垂直的四边形是矩形 C. 对角线互相垂直的矩形是正方形 D. 四边

3、相等的平行四边形是正方形 7. 如图所示,是巴中某校对学生到校方式的情况统计图若该 校骑自行车到校的学生有 200人, 则步行到校的学生有 ( ) A. 120 人 B. 160 人 C. 125人 D. 180 人 8. 如图ABCD, F为 BC中点,延长 AD至 E, 使 DE: AD=1: 3,连结 EF交 DC 于点 G,则 SDEG:SCFG=( ) A. 2:3 B. 3:2 C. 9:4 D. 4:9 9. 如图, 圆锥的底面半径 r=6, 高 h=8, 则圆锥的侧面积是 ( ) A. 15 B. 30 C. 45 第 2 页,共 22 页 D. 60 10. 二次函数 y=a

4、x2+bx+c(a0)的图象如图所示,下列结论b2 4ac,abc0,2a+b-c0,a+b+c0其中正确的是 ( ) A. B. C. D. 二、填空题(本大题共 5 小题,共 20.0 分) 11. 函数 y=;1 ;3 的自变量 x 的取值范围_ 12. 如果一组数据为 4、a、5、3、8,其平均数为 a,那么这组数据的方差为_ 13. 如图, 反比例函数 y= (x0) 经过 A、 B两点, 过点 A作 ACy 轴于点 C,过点 B作 BDy 轴于点 D,过点 B作 BEx 轴于点 E, 连结 AD, 已知 AC=1、 BE=1、 S矩形BDOE=4 则 SACD=_ 14. 若关于

5、x的分式方程 ;2+ 2 2;=2m有增根,则 m 的值为_ 15. 如图,等边三角形 ABC内有一点 P,分別连结 AP、BP、CP,若 AP=6,BP=8,CP=10则 SABP+SBPC=_ 三、解答题(本大题共 11 小题,共 90.0 分) 16. 计算(-1 2) 2+(3-)0+| 3 -2|+2sin60 - 8 17. 已知实数 x、y满足 3+y2-4y+4=0,求代数式 2;2 1 2;2:2 2;2的值 第 3 页,共 22 页 18. 如图,等腰直角三角板如图放置直角顶点 C在直线 m 上,分别过点 A、B作 AE 直线 m于点 E,BD直线 m于点 D 求证:EC=

6、BD; 若设AEC三边分别为 a、b、c,利用此图证明勾股定理 19. ABC 在边长为 l的正方形网格中如图所示 以点 C 为位似中心,作出ABC 的位似图形A1B1C, 使其位似比为 1:2且A1B1C位于点 C 的异侧,并表 示出 A1的坐标 作出ABC绕点 C顺时针旋转 90 后的图形A2B2C 在的条件下求出点 B经过的路径长 20. 在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户已知甲物品 的单价比乙物品的单价高 10 元,若用 500元单独购买甲物品与 450 元单独购买乙 物品的数量相同 请问甲、乙两种物品的单价各为多少? 如果该单位计划购买甲、 乙两种物品共55

7、件, 总费用不少于5000元且不超过5050 元,通过计算得出共有几种选购方案? 第 4 页,共 22 页 21. 如图表示的是某班部分同学衣服上口袋的数目 从图中给出的信息得到学生衣服上口袋数目的中位数为_,众数为_ 根据如图信息,在给出的图表中绘制频数条形统计图,由此估计该班学生衣服上 口袋数目为 5x7的概率 22. 已知关于 x 的一元二次方程 x2+(2m+1)x+m2-1=0有两不相等的实数根 求 m的取值范围 设 x1,x2是方程的两根且 x12+x22+x1x2-17=0,求 m的值 23. 某区域平面示意图如图所示,点 D 在河的右侧,红军路 AB 与某桥 BC 互相垂直某校

8、“数学兴趣小组”在“研 学旅行”活动中,在 C处测得点 D 位于西北方向,又在 A 处测得点 D位于南偏东 65 方向,另测得 BC=414m, AB=300m,求出点 D到 AB 的距离 第 5 页,共 22 页 (参考数据 sin650.91,cos650.42,tan652.14) 24. 如图,一次函数 y1=k1x+b(k1、b为常数,k10)的图象与 反比例函数 y2=2 (k20,x0)的图象交于点 A(m,8) 与点 B(4,2) 求一次函数与反比例函数的解析式 根据图象说明,当 x为何值时,k1x+b-2 0 25. 如图, 在菱形 ABCD 中, 连结 BD、 AC交于点

9、O, 过点 O作 OHBC 于点 H,以点 O 为圆心,OH为半径的半圆交 AC于点 M 求证:DC 是O的切线 若 AC=4MC且 AC=8,求图中阴影部分的面积 在的条件下,P 是线段 BD上的一动点,当 PD为何值时, PH+PM的值最小,并求出最小值 26. 如图, 抛物线 y=ax2+bx-5 (a0) 经过 x 轴上的点 A (1, 0) 和点 B及 y 轴上的点 C, 经过 B、C两点的直线为 y=x+n 求抛物线的解析式 点 P从 A 出发,在线段 AB 上以每秒 1个单位的速度向 B运动,同时点 E从 B 出 发,在线段 BC 上以每秒 2个单位的速度向 C 运动当其中一个点

10、到达终点时,另 一点也停止运动设运动时间为 t秒,求 t为何值时,PBE的面积最大并求出最 第 6 页,共 22 页 大值 过点 A 作 AMBC于点 M,过抛物线上一动点 N(不与点 B、C 重合)作直线 AM 的平行线交直线 BC于点 Q若点 A、M、N、Q 为顶点的四边形是平行四边形,求 点 N 的横坐标 第 7 页,共 22 页 答案和解析答案和解析 1.【答案】A 【解析】 解:A、a+a=2a,故本选项正确; B、a5 a4=a,故本选项错误; C、(a5)4=a20,故本选项错误; D、a5-a4,不能合并,故本选项错误 故选:A 根据合并同类项法则,同底数幂的除法的性质,幂的乘

11、方的性质对各选项分 析判断后利用排除法求解 本题考查了合并同类项法则,同底数幂的除法,幂的乘方理清指数的变化 是解题的关键 2.【答案】C 【解析】 解:点 A(-4,3),点 A 与点 B关于原点对称, 点 B(4,-3) 故选:C 根据关于原点的对称点,横、纵坐标都变成相反数解答 本题考查了关于原点对称的点的坐标,熟记“关于原点的对称点,横、纵坐标 都变成相反数”是解题的关键 3.【答案】C 【解析】 解:将 9300万元用科学记数法表示为:9.3 107元 故选:C 科学记数法的表示形式为 a 10n的形式,其中 1|a|10,n 为整数确定 n 的 值时,要看把原数变成 a时,小数点移

12、动了多少位,n的绝对值与小数点移动 的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数 第 8 页,共 22 页 此题考查了科学记数法的表示方法科学记数法的表示形式为a 10n的形式, 其中 1|a|10,n 为整数,表示时关键要正确确定 a的值以及 n的值 4.【答案】C 【解析】 解:如图所示,它的主视图是: 故选:C 根据实物的特点以及主视图的定义判断即可 本题考查实物体的三视图在画图时一定要将物体的边缘、棱、顶点都体现 出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉 5.【答案】B 【解析】 解:将代入得: , a+b=2; 故选:B 将代入即可求出 a与

13、b 的值; 本题考查二元一次方程组的解;熟练掌握方程组与方程组的解之间的关系是 解题的关键 6.【答案】C 【解析】 解:A、对角线相等的平行四边形是矩形,所以 A选项错误; B、对角线相等的平行四边形是矩形,所以 B 选项错误; C、对角线互相垂直的矩形是正方形,所以 C 选项正确; D、四边相等的菱形是正方形,所以 D选项错误 故选:C 根据矩形的判定方法对 A、B矩形判断;根据正方形的判定方法对 C、D矩形 判断 第 9 页,共 22 页 本题考查了命题与定理:命题的“真”“假”是就命题的内容而言仸何一个命题 非真即假要说明一个命题的正确性,一般需要推理、论证,而判断一个命题 是假命题,

14、只需举出一个反例即可 7.【答案】B 【解析】 解:学生总数:200 25%=800(人), 步行到校的学生:800 20%=160(人), 故选:B 扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占 总数的百分数通过扇形统计图可以很清楚地表示出各部分数量同总数之间 的关系用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总 数的百分数 本题考查的是扇形统计图读懂统计图,从不同的统计图中得到必要的信息 是解决问题的关键;扇形统计图直接反映部分占总体的百分比大小 8.【答案】D 【解析】 解:设 DE=x, DE:AD=1:3, AD=3x, 四边形 ABCD是平行四边

15、形, ADBC,BC=AD=3x, 点 F是 BC 的中点, CF=BC=x, ADBC, DEGCFG, =()2=()2= , 故选:D 先设出 DE=x,进而得出 AD=3x,再用平行四边形的性质得出 BC=3x,进而求 出 CF,最后用相似三角形的性质即可得出结论 第 10 页,共 22 页 此题主要考查了相似三角形的判定和性质,平行四边形的性质,中点的定义, 表示出 CF是解本题的关键 9.【答案】D 【解析】 解:圆锥的母线 l=10, 圆锥的侧面积=106=60, 故选:D 圆锥的侧面积:S侧=2rl=rl,求出圆锥的母线 l 即可解决问题 本题考查圆锥的侧面积,勾股定理等知识,

16、解题的关键是记住圆锥的圆锥的 侧面积公式 10.【答案】A 【解析】 解:抛物线与 x 轴由两个交点, b 2-4ac0, 即 b24ac, 所以正确; 由二次函数图象可知, a0,b0,c0, abc0, 故错误; 对称轴:直线 x=-=-1, b=2a, 2a+b-c=4a-c, a0,4a0, c0,-c0, 2a+b-c=4a-c0, 故错误; 对称轴为直线 x=-1,抛物线与 x 轴一个交点-3x1-2, 抛物线与 x 轴另一个交点 0x21, 当 x=1 时,y=a+b+c0, 第 11 页,共 22 页 故正确 故选:A 抛物线与 x 轴由两个交点,则 b2-4ac0,即 b24

17、ac,所以正确;由二 次函数图象可知,a0,b0,c0,所以 abc0,故错误; 对称轴:直线 x=-=-1,b=2a,所以 2a+b-c=4a-c,2a+b-c=4a-c0,故错 误; 对称轴为直线 x=-1,抛物线与 x轴一个交点-3x1-2,则抛物线与 x轴另 一个交点 0x21,当 x=1 时,y=a+b+c0,故正确 本题考查了二次函数图象与系数的关系,熟练掌握二次函数图象的性质是解 题的关键 11.【答案】x1,且 x3 【解析】 解:根据题意得: 解得 x1,且 x3, 即:自变量 x 取值范围是 x1,且 x3 本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部

18、分根据二次根式的意义,被开方数 x-10;根据分式有意义的条件,x-30, 则函数的自变量 x 取值范围就可以求出 函数自变量的范围一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为 0; (3)当函数表达式是二次根式时,被开方数为非负数 12.【答案】14 5 【解析】 解:根据题意,得:=a, 解得:a=5, 则这组数据为 4、5、5、3、8,其平均数是 5, 第 12 页,共 22 页 所以这组数据的方差为 (4-5)2+(5-5)2+(5-5)2+(3-5)2+(8-5)2= , 故答案为: 先根据平均数的定义确定出

19、 a 的值,再根据方差公式进行计算即可求出答案 此题考查了平均数和方差的定义平均数是所有数据的和除以数据的个 数方差是一组数据中各数据与它们的平均数的差的平方的平均数 13.【答案】3 2 【解析】 解:过点A作AHx轴于点H,交BD于点F,则四边形ACOH和四边形ACDF 均为矩形,如图: S 矩形BDOE=4,反比例函数 y= (x0)经过 B点 k=4 S 矩形ACOH=4, AC=1 OC=4 1=4 CD=OC-OD=OC-BE=4-1=3 S 矩形ACDF=1 3=3 S ACD= 故答案为: 过点 A作 AHx 轴于点 H,交 BD于点 F,则四边形 ACOH和四边形 ACDF

20、均为矩形,根据 S 矩形BDOE=4,可得 k 的值,即可得到矩形 ACOH和矩形 ACDF的面积,进而可求出 SACD 此题主要考查的知识有:反比例函数系数k的几何意义和性质,通过矩形的面 积求出 k的值是解本题的关键 第 13 页,共 22 页 14.【答案】1 【解析】 解:方程两边都乘 x-2,得 x-2m=2m(x-2) 原方程有增根, 最简公分母 x-2=0, 解得 x=2, 当 x=2 时,m=1 故 m 的值是 1, 故答案为 1 增根是化为整式方程后产生的不适合分式方程的根所以应先确定增根的可 能值,让最简公分母 x-2=0,得到 x=2,然后代入化为整式方程的方程算出 m

21、的值 本题考查了分式方程的增根增根问题可按如下步骤进行:让最简公分母 为 0 确定增根;化分式方程为整式方程;把增根代入整式方程即可求得 相关字母的值 15.【答案】24+16 3 【解析】 解:如图,将BPC 绕点 B逆时针旋转 60 后得APB,连接 PP, 根据旋转的性质可知, 旋转角PBP=CAB=60 ,BP=BP, BPP为等边三角形, BP=BP=8=PP; 由旋转的性质可知,AP=PC=10, 在BPP中,PP=8,AP=6, 由勾股定理的逆定理得,APP是直角三角形, S ABP+SBPC=S四边形APBP=SBPB+SAPP= BP2+ PP AP=24+16 第 14 页

22、,共 22 页 故答案为:24+16 将BPC 绕点 B逆时针旋转 60 后得APB,根据旋转的性质可得 PBP=CAB=60 ,BP=BP,可得BPP为等边三角形,可得 BP=BP=8=PP, 由勾股定理的逆定理可得,APP是直角三角形,由三角形的面积公式可求 解 本题考查了旋转的性质,等边三角形的性质,勾股定理,作辅助线构造出等 边三角形和直角三角形是解题的关键,也是本题的难点 16.【答案】解:原式=1 4 + 1 + 2 3 + 2 3 2 22 = 13 4 22 【解析】 分别根据幂的定义、零指数幂、绝对值的性质、特殊角的三角函数值以及二 次根式的性质化简即可 本题考查了实数的运算

23、法则,属于基础题,解答本题的关键是熟练掌握二次 根式的性质、绝对值的性质以及特殊角的三角函数值等知识 17.【答案】解: 2;2 1 2;2:2 2;2 =(:)(;) 1 (;)2 (;) =: , 3+y2-4y+4=0, 3+(y-2)2=0, x=3,y=2, 原式=3:2 3 =5 3 【解析】 根据分式的乘除法法则把原式化简,根据非负数的性质分别求出 x、y,代入 计算即可 本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键 18.【答案】证明:ACB=90 , ACE+BCD=90 ACE+CAE=90 , CAE=BCD 第 15 页,共 22 页 在AEC与BCD

24、 中, = = = CAEBCD(AAS) EC=BD; 解:由知:BD=CE=a CD=AE=b S 梯形AEDB= 1 2(a+b)(a+b) =1 2a 2+ab+1 2b 2 又S梯形AEDB=SAEC+SBCD+SABC =1 2ab+ 1 2ab+ 1 2c 2 =ab+1 2c 2 1 2a 2+ab+1 2b 2=ab+1 2c 2 整理,得 a2+b2=c2 【解析】 通过 AAS 证得CAEBCD,根据全等三角形的对应边相等证得结论; 利用等面积法证得勾股定理 主要考查了同角的余角相等,全等三角形的判定和性质,勾股定理的证明, 解本题的关键是判断两三角形全等 19.【答案】

25、解:如图,A1B1C为所作,点 A1的坐标为(3,-3); 如图,A2B2C为所作; OB=12+ 42=17, 点 B 经过的路径长=9017 180 = 17 2 【解析】 延长 AC 到 A1使 A1C=2AC,延长 BC 到 B1使 B1C=2BC,则A1B1C 满足 条件; 第 16 页,共 22 页 利用网格特点和旋转的性质画出 A、B的对应点 A2、B2,从而得到A2B2C 先计算出 OB的长,然后根据弧长公式计算点 B经过的路径长 本题考查了作图-位似变换:画位似图形的一般步骤为:确定位似中心;分别连 接并延长位似中心和能代表原图的关键点;根据位似比,确定能代表所作 的位似图形

26、的关键点;顺次连接上述各点,得到放大或缩小的图形也考查了 旋转变换 20.【答案】解:设乙种物品单价为 x元,则甲种物品单价为(x+10)元,由题意得: 500 :10= 450 解得 x=90 经检验,x=90 符合题意 甲种物品的单价为 100元,乙种物品的单价为 90 元 设购买甲种物品 y 件,则乙种物品购进(55-y)件 由题意得:5000100y+90(55-y)5050 解得 5y10 共有 6 种选购方案 【解析】 设乙种物品单价为 x 元,则甲种物品单价为(x+10)元,由题意得分式方程, 解之即可; 设购买甲种物品 y件,则乙种物品购进(55-y)件,由题意得不等式,从而得

27、 解 本题考查了分式方程的应用以及一元一次不等式的整数解的问题本题中等 难度 21.【答案】4 4 【解析】 解:由图可知,学生衣服上口袋的数目分别为: 3,4,2,6,5,5,3,1,4,2,4,6,10,7,1,4,5,6,2,10,3 按从小到大的顺序排列为: 1,1,2,2,2, 3,3,3,4,4, 4,4,5,5,5, 6,6,6,7,10,10 故中位数为 4,众数为 4, 第 17 页,共 22 页 故答案为 4,4 (2)条形图如图所示: 估计该班学生衣服上口袋数目为 5x7 的概率= 根据中位数、众数的概念分别求得学生衣服上口袋数目的中位数、众数; 根据图中得出的数据绘制频

28、数条形统计图,用衣服上口袋数目为 5x7 的人数除以总人数 21即可 本题考查条形统计图,样本估计总体,中位数,众数等知识,解题的关键是熟 练掌握基本知识,属于中考常考题型 22.【答案】解:根据题意得: =(2m+1)2-4(m2-1)0, 解得:m 5 4, 根据题意得: x1+x2=-(2m+1),x1x2=m2-1, x12+x22+x1x2-17 =(1+ 2)2-x1x2-17 =(2m+1)2-(m2-1)-17 =0, 解得:m1=5 3,m2=-3(不合题意,舍去), m的值为5 3 【解析】 根据“关于 x的一元二次方程 x2+(2m+1)x+m2-1=0有两不相等的实数根

29、”, 结合判别式公式,得到关于 m 的不等式,解之即可, 第 18 页,共 22 页 根据“x1,x2是方程的两根且 x12+x22+x1x2-17=0”,结合根与系数的关系, 列出关于 m 的一元二次方程,解之,结合(1)的结果,即可得到答案 本题考查了根与系数的关系,根的判别式,解题的关键:正确掌握判别式 公式,正确掌握根与系数的关系 23.【答案】解:如图,过点 D 作 DEAB于 E,过 D作 DFBC 于 F,则四边形 EBFD 是矩形, 设 DE=x, 在 RtADE 中,AED=90 , tanDAE= , AE= = 2.14, BE=300- 2.14, 又 BF=DE=x,

30、 CF=414-x, 在 RtCDF 中,DFC=90 ,DCF=45 , DF=CF=414-x, 又 BE=CF, 即:300- 2.14=414-x, 解得:x=214, 故:点 D 到 AB 的距离是 214m 【解析】 过点D作DEAB于E,过D作DFBC于F,则四边形EBFD是矩形,设DE=x, 根据 BE=DF=CF,列方程可得结论 本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确根据三 角函数列方程是解题的关键 24.【答案】解:把点 B(4,2)代入反比例函数 y2=2 (k20,x0)得,k2=4 2=8, 反比例函数的解析式为 y2=8 , 将点 A(m,8)

31、代入 y2得,8= 8 ,解得 m=1, 第 19 页,共 22 页 A(1,8), 将 A、B 的坐标代入 y1=k1x+b(k1、b 为常数,k10)得4 1+ = 2 1:8 , 解得 = 10 1;2 , 一次函数的解析式为 y1=-2x+10; 由图象可知:当 0x1 或 x4 时,y1y2,即 k1x+b-2 0 【解析】 把B点坐标代入反比例函数解析式可求得k2的值,把点A(m,8)代入求得 的反比例函数的解析式求得 m,然后利用待定系数法即可求得一次函数的解 析式; 直接由 A、B的坐标可求得答案 本题考查了一次函数和反比例函数的交点,待定系数法求一次函数和反比例 函数的解析式

32、,熟练掌握待定系数法是解题的关键 25.【答案】解:过点 O作 OGCD,垂足为 G, 在菱形 ABCD中,AC是对角线,则 AC 平分BCD, OHBC,OGCD, OH=OG, OH、OG 都为圆的半径,即 DC是O的切线; AC=4MC 且 AC=8, OC=2MC=4, MC=OM=2, OH=2, 在直角三角形 OHC 中,HO=1 2CO, OCH=30 ,COH=60 , HC=2 2= 23, S阴影=SOCH-S扇形OHM=1 2CHOH- 60 360 OH 2=2 3 -2 3 ; 作 M 关于 BD的对称点 N,连接 HN交 BD于点 P, PM=NP, PH+PM=P

33、H+PN=HN,此时 PH+PM 最小, ON=OM=OH, MOH=60 , 第 20 页,共 22 页 MNH=30 , MNH=HCM, HN=HC=2 3, 即:PH+PM的最小值为 2 3, 在 RtNPO 中, OP=ONtan30 =23 3 , 在 RtCOD中, OD=OCtan30 =43 3 , 则 PD=OP+OD=2 3 【解析】 作 OHBC,证明 OH为圆的半径,即可求解; 利用 S 阴影=SOCH-S扇形OHM= CHOH-OH2,即可求解; 作 M 关于 BD的对称点 N,连接 HN交 BD于点 P,PH+PM=PH+PN=HN, 此时 PH+PM 最小,即可

34、求解 本题为圆的综合运用题,涉及到圆切线的性质及应用、点的对称性、解直角 三角形等知识,其中,通过点的对称性确定 PH+PM 最小,是本题的难点和 关键 26.【答案】解:点 B、C 在直线为 y=x+n 上, B(-n,0)、C(0,n), 点 A(1,0)在抛物线上, + 5 = 0 2+ 5 = 0 = 5 , a=-1,b=6, 抛物线解析式:y=-x2+6x-5; 由题意,得, PB=4-t,BE=2t, 由知,OBC=45 , 点 P到 BC 的高 h为 BPsin45 = 2 2 (4-t), SPBE =1 2BEh= 1 2 2 2 (4 ) 2= 2 2 ( 2)2+ 22

35、, 当 t=2 时,PBE的面积最大,最大值为 2 2; 由知,BC所在直线为:y=x-5, 点 A到直线 BC 的距离 d=2 2, 过点 N作 x轴的垂线交直线 BC于点 P,交 x 轴于点 H 设 N(m,-m2+6m-5),则 H(m,0)、P(m,m-5), 易证PQN为等腰直角三角形,即 NQ=PQ=2 2, 第 21 页,共 22 页 PN=4, NH+HP=4, -m2+6m-5-(m-5)=4 解得 m1=1,m2=4, 点 A、M、N、Q为顶点的四边形是平行四边形, m=4; NH+HP=4, m-5-(-m2+6m-5)=4 解得 m1=5:41 2 ,m2=5;41 2

36、 , 点 A、M、N、Q为顶点的四边形是平行四边形, m5, m=5:41 2 , NH-HP=4, -(-m2+6m-5)-(m-5)=4, 解得 m1=5:41 2 ,m2=5;41 2 , 点 A、M、N、Q为顶点的四边形是平行四边形, m0, m=5;41 2 , 综上所述, 若点 A、 M、 N、 Q为顶点的四边形是平行四边形, 点 N 的横坐标为: 4或5:41 2 或 5;41 2 【解析】 点B、C在直线为 y=x+n上,则B(-n,0)、C(0,n),点A(1,0)在抛物线上, 所以,解得 a=-1,b=6,因此抛物线解析式:y=-x2+6x-5; 先求出点 P 到 BC 的

37、高 h为 BPsin45 =(4-t),于是 SPBE=BEh= =,当t=2时,PBE的面积最大,最大值为 2 ; 由知,BC所在直线为:y=x-5,所以点 A到直线 BC的距离 d=2,过点 N作 x 轴的垂线交直线 BC 于点 P,交 x 轴于点 H设 N(m,-m2+6m-5),则 H (m,0)、P(m,m-5),易证PQN 为等腰直角三角形,即 NQ=PQ=2,PN=4, NH+HP=4,所以-m2+6m-5-(m-5)=4解得 m1=1(舍去),m2=4, NH+HP=4,m-5-(-m2+6m-5)=4解得 m1=,m2=(舍去), 第 22 页,共 22 页 NH-HP=4,-(-m2+6m-5)-(m-5)=4,解得 m1=(舍去),m2= 本题考查了二次函数,熟练掌握二次函数的性质、平行四边形的判定与性质 是解题的关键