ImageVerifierCode 换一换
格式:PPTX , 页数:29 ,大小:1.63MB ,
资源ID:130645      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-130645.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(3.1.2 第3课时 椭圆中的定点、定值及存在性问题ppt课件)为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

3.1.2 第3课时 椭圆中的定点、定值及存在性问题ppt课件

1、第3课时 椭圆中的定点、定值及存在性问题,第三章 1.2 椭圆的简单性质,题型一 定点问题,题型探究,TIXINGTANJIU,(2)设椭圆E的左顶点是A,若直线l:xmyt0与椭圆E相交于不同的两点M,N(M,N与A均不重合),若以MN为直径的圆过点A,试判定直线l是否过定点,若过定点,求出该定点的坐标.,解 由xmyt0得xmyt, 把它代入E的方程得(m22)y22mtyt240, 设M(x1,y1),N(x2,y2),,因为以MN为直径的圆过点A, 所以AMAN,,因为M,N与A均不重合,所以t2,,由于点T在椭圆内部,故满足判别式大于0,,反思感悟 求定点问题,需要注意两个方面: 一

2、是抓“特值”,涉及的定点多在两条坐标轴上,所以可以先从斜率不存在或斜率为0的特殊情况入手找出定点,为解题指明方向. 二是抓“参数之间的关系”,定点问题多是直线过定点,所以要抓住问题的核心,实质就是求解直线方程中参数之间的关系,所以要熟悉直线方程的特殊形式,若直线的方程为ykxb,则直线ykxb恒过点(0,b),若直线方程为yk(xa),则直线恒过点(a,0).,(1)求椭圆C的标准方程;,(2)如图所示,椭圆C的左顶点为A,过原点O的直线(与坐标轴不重合)与椭圆C交于P,Q两点,直线PA,QA分别与y轴交于M,N两点.试问以MN为直径的圆是否经过定点(与直线PQ的斜率无关)?并说明理由.,题型

3、二 定值问题,(1)求椭圆C的方程及离心率;,解 由题意得a2,b1,,(2)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.,证明 设P(x0,y0)(x00,y00),,又A(2,0),B(0,1),,从而四边形ABNM的面积为定值.,反思感悟 (1)求定值问题的常用方法: 从特殊入手,求出定值,再证明这个值与变量无关. 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. (2)定值问题就是在运动变化中寻找不变量的问题,基本思路是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类问题中选择消元的方向是非

4、常关键的.,(1)求椭圆C的方程;,由余弦定理,得|F1F2|2|MF1|2|MF2|22|MF1|MF2|cos 60 (|MF1|MF2|)22|MF1|MF2|(1cos 60),,由|F1F2|4得c2,从而b2,,(2)设N(0,2),过点P(1,2)作直线l,交椭圆C于异于N的A,B两点,直线NA,NB的斜率分别为k1,k2,证明:k1k2为定值.,证明 当直线l的斜率存在时, 设斜率为k,显然k0,则其方程为y2k(x1),,56k232k0, 设A(x1,y1),B(x2,y2),,综上,k1k2为定值.,题型三 存在性问题,(1)求椭圆E的方程;,解 当直线l与x轴垂直时不满

5、足条件. 故可设A(x1,y1),B(x2,y2), 直线l的方程为yk(x2)1, 代入椭圆方程得(34k2)x28k(2k1)x16k216k80,,即4(x12)(x22)(y11)(y21)5, 4(x12)(x22)(1k2)5, 即4x1x22(x1x2)4(1k2)5,,反思感悟 解决探索性问题的注意事项 探索性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在. (1)当条件和结论不唯一时要分类讨论; (2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件; (3)当条件和结论都不知,按常规方法解题很难时,要开放思维,采取另外合适的方法.,(1)求椭圆C的方程;,设A(x1,y1),B(x2,y2), 则x1,x2是上述方程的两个根,,由题意知OAOB,则x1x2y1y20,,