ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:303.50KB ,
资源ID:129985      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-129985.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(北京四中数学中考冲刺:观察、归纳型问题--知识讲解(提高))为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

北京四中数学中考冲刺:观察、归纳型问题--知识讲解(提高)

1、 第 1 页 共 8 页 中考中考冲刺冲刺:观察、归纳型问题观察、归纳型问题知识讲解(知识讲解(提高提高) 【中考展望】【中考展望】 主要通过观察、实验、归纳、类比等活动,探索事物的内在规律,考查学生的逻辑推理能力,一般 以解答题为主归纳猜想型问题在中考中越来越被命题者所注重. 这类题要求根据题目中的图形或者数字,分析归纳,直观地发现共同特征,或者发展变化的趋势, 据此去预测估计它的规律或者其他相关结论,使带有猜想性质的推断尽可能与现实情况相吻合,必要时 可以进行验证或者证明,以此体现出猜想的实际意义. 【方法点拨】【方法点拨】 观察、归纳猜想型问题对考生的观察分析能力要求较高,经常以填空等形

2、式出现,解题时要善于从 所提供的数字或图形信息中,寻找其共同之处,这个存在于个例中的共性,就是规律.其中蕴含着“特 殊一般特殊”的常用模式,体现了总结归纳的数学思想,这也正是人类认识新生事物的一般过 程.相对而言,猜想结论型问题的难度较大些,具体题目往往是直观猜想与科学论证、具体应用的结合, 解题的方法也更为灵活多样:计算、验证、类比、比较、测量、绘图、移动等等,都能用到. 考查知识分为两类:是数字或字母规律探索型问题;是几何图形中规律探索型问题 1数式归纳 题型特点:通常给定一些数字、代数式、等式或不等式,然后观察猜想其中蕴含的规律,归纳出用 某一字母表示的能揭示其规律的代数式或按某些规律写

3、出后面某一项的数或式子 解题策略:一般是先写出数或式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系) 或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式 2图形变化归纳 题型特点:观察给定图形的摆放特点或变化规律,归纳出下一个图形的摆放特点或变化规律,或者 能用某一字母的代数式揭示出图形变化的个数、面积、周长等规律特点 解题策略:多方面、多角度进行观察比较得出图形个数、面积、周长等的通项,再分别取 n1,2, 3代入验证,都符合时即为正确结论 由于猜想归纳本身就是一种重要的数学方法,也是人们探索发现新知的重要手段,非常有利于培养 创造性思维能力,所以备受命

4、题专家的青睐,逐步成为中考的持续热点. 【典型例题】【典型例题】 类型一、数式归类型一、数式归纳纳 1“数学王子”高斯从小就善于观察和思考在他读小学时就能在课堂上快速地计算出 1+2+3+98+99+100=5050,今天我们可以将高斯的做法归纳如下: 令 S=1+2+3+98+99+100 S=100+99+98+3+2+1 +:有 2S=(1+100)100 解得:S=5050 请类比以上做法,回答下列问题: 若 n 为正整数,3+5+7+(2n+1)=168,则 n= 【思路点拨】 根据题目提供的信息,列出方程,然后求解即可 【答案与解析】 解:设 S=3+5+7+(2n+1)=168,

5、 第 2 页 共 8 页 则 S=(2n+1)+7+5+3=168, +得,2S=n(2n+1+3)=2168, 整理得,n 2+2n-168=0, 解得 n1=12,n2=-14(舍去) 故答案为:12 【总结升华】 本题考查了有理数的混合运算,读懂题目提供的信息,表示出这列数据的和并列出方程是解题的 关键 举一反三:举一反三: 【变式变式】如下数表是由从 1 开始的连续自然数组成,观察规律并完成各题的解答 (1)表中第 8 行的最后一个数是 ,它是自然数 的平方,第 8 行共有 个数; (2) 用含n的代数式表示: 第n行的第一个数是 , 最后一个数是 , 第n行共有 个 数; (3)求第

6、n行各数之和 【答案】 (1)64, 8, 15; (2)n 2-2n+2, n2, 2n-1; (3) 32 2331nnn 类型二、图形变化归纳类型二、图形变化归纳 2课题:两个重叠的正多边形,其中的一个绕着某一顶点旋转所形成的有关问题 实验与论证实验与论证 设旋转角A1A0B1(A1A0A2), 3 , 4 , 5 , 6 所表示的角如图所示 第 3 页 共 8 页 (1)用含的式子表示角的度数: 3 _, 4 _, 5 _; (2)如上图图中,连结 A0H 时,在不添加其他辅助线的情况下,是否存在与直线 A0H 垂直且被 它平分的线段?若存在,请选择其中的一个图给出证明;若不存在,请说

7、明理由; 归纳与猜想归纳与猜想 设正n边形A0A1A2 1n A 与正n边形A0B1B2 1n B 重合(其中, A1与B1重合), 现将正n边形A0B1B2 1n B 绕顶点 A0逆时针旋转 180 0 n (3)设 n 与上述“ 3 , 4 ,”的意义样,请直接写出 n 的度数; (4)试猜想在正 n 边形的情形下,是否存在与直线 A0H 垂直且被它平分的线段?若存在,请将这条线 段用相应的顶点字母表示出来(不要求证明);若不存在,请说明理由 【思路点拨】 (1)要求的度数,应从旋转中有关角度的变与不变上突破; (2)结合图形比较容易得到被 A0H 垂 直平分的线段,在证明时要充分利用背景

8、中正多边形及旋转中的角度; (3)要探究 n 的度数,要注意区 分正偶数边形及正奇数边形两种情形去思考与求解度数的表达式; (4)要探究正 n 边形中被 A0H 垂直平 分的线段,也应注意区分正偶数边形及正奇数边形两种情形去思考与突破. 【答案与解析】 解:(1)60,36 (2)存在下面就所选图形的不同分别给出证明: 选图图中有直线 A0H 垂直平分 A2B1(如图所示), 证明如下: 证法一:证明:A0A1A2与A0B1B2是全等的等边三角形, A0A2A0B1, 第 4 页 共 8 页 A0A2BlA0B1A2 又A0A2HA0B1H60, HA2BlHB1A2, A2HB1H,点 H

9、在线段 A2B1的垂直平分线上 又A0A2A0B1, 点 A0在线段 A2B1的垂直平分线上 直线 A0H 垂直平分 A2B1 证法二:证明:A0A1A2与A0B1B2是全等的等边三角形, A0A2A0B1, A0A2B1A0BlA2 又A0A2HA0B1H, HA2BlHB1A2 HA2HB1 在A0A2H 与A0B1H 中, A0A2A0B,HA2HB1,A0A2BA0B1H, A0A2HA0B1H, A2A0HB1A0H, A0H 平分等腰三角形 A0A2B1的顶角A2A0B1, 直线 A0H 垂直平分 A2B1 选图图中有直线 A0H 垂直平分 A2B2(如图所示), 证明如下: A0

10、B2A0A2, A0B2A2A0A2B2 又A0B2B1A0A2A345, HB2A2HA2B2, HB2HA2, 点 H 在线段 A2B 的垂直平分线上 又A0B2A0A2, 点 A0在线段 A2B2的垂直平分线上 直线 A0H 垂直平分 A2B2 (3)当 n 为奇数时, 当 n 为偶数时, n (4)存在当 n 为奇数时,直线 A0H 垂直平分 11 22 nn AB ; 第 5 页 共 8 页 当 n 为偶数时,直线 A0H 垂直平分 22 nn A B 【总结升华】 本题考查由特殊到一般推理论证的能力,属较难题具有较强的逻辑推理能力及演绎推理意识是解 决问题的关键 举一反三:举一反三

11、: 【变式变式】长为 20,宽为 a 的矩形纸片(10a20) ,如图那样折一下,剪下一个边长等于矩形宽度的正 方形(称为第一次操作) ;再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形 (称为第二次操作) ;如此反复操作下去,若在第 n 次操作后,剩下的矩形为正方形,则操作停止当 n=3 时,a 的值为 【答案】 解:由题意,可知当 10a20 时,第一次操作后剩下的矩形的长为 a,宽为 20-a,所以第二次操作时 正方形的边长为 20-a,第二次操作以后剩下的矩形的两边分别为 20-a,2a-20 此时,分两种情况: 如果 20-a2a-20,即 a40,那么第三次操作时

12、正方形的边长为 2a-20 则 2a-20=(20-a)-(2a-20) ,解得 a=12; 如果 20-a2a-20,即 a,那么第三次操作时正方形的边长为 20-a 则 20-a=(2a-20)-(20-a) ,解得 a=15 当 n=3 时,a 的值为 12 或 15 故答案为:12 或 15 3用 4 个全等的正八边形进行拼接,使相等的两个正八边形有一条公共边,围成一圈后中间形成 一个正方形,如图 1,用 n 个全等的正六边形按这种方式进行拼接,如图 2,若围成一圈后中间形成一 个正多边形,则 n 的值为 【思路点拨】 根据正六边形的一个内角为 120,可求出正六边形密铺时需要的正多边

13、形的内角,继而可求出 这个正多边形的边数 【答案与解析】 解:两个正六边形结合,一个公共点处组成的角度为 240, 第 6 页 共 8 页 故如果要密铺,则需要一个内角为 120的正多边形, 而正六边形的内角为 120,故答案为:6 【总结升华】 此题考查了平面密铺的知识,解答本题关键是求出在密铺条件下需要的正多边形的一个内角的度 数,有一定难度 举一反三:举一反三: 【变式变式】如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n(n 是大于 0 的整数)个图形需要黑色棋子的个数是 【答案】 第 1 个图形是 23-3,第 2 个图形是 34-4,第 3 个图形是

14、 45-5,按照这样的规律摆下去,则第 n 个图形需要黑色棋子的个数是(n+1)(n+2)-(n+2) = n 2+2n 或或第 n 个图形是 n+2 边形,每条边上有 n+1 个点,共有 n+2 个顶点,每个顶点上的黑子都被两条边 重复计算;所以,第 n 个图形需要摆放 (n+1)(n+2)-(n+2) = n 2+2n 个黑子. 答案:第 n 个图形需要黑色棋子的个数是 n 2+2n 类型三、数值类型三、数值、数量、数量结果归纳结果归纳 4已知在平面直角坐标系中放置了 5 个如图所示的正方形(用阴影表示) ,点 B1在 y 轴上,点 C1、 E1、E2、C2、E3、E4、C3在 x 轴上若

15、正方形 A1B1C1D1的边长为 1,B1C1O=60,B1C1B2C2B3C3,则点 A3 到 x 轴的距离是( ) A B C D 【思路点拨】 利用正方形的性质以及平行线的性质分别得出 D1E1=B2E2= ,B2C2=,进而得出 B3C3= ,求出 WQ= = ,FW=WA3cos30= =,即可得出答案 第 7 页 共 8 页 【答案与解析】 解:过小正方形的一个顶点 W 作 FQx 轴于点 Q,过点 A3FFQ 于点 F, 正方形 A1B1C1D1的边长为 1,B1C1O=60,B1C1B2C2B3C3, B3C3 E4=60,D1C1E1=30,E2B2C2=30, D1E1=

16、D1C1= ,D1E1=B2E2= , cos30= =, 解得:B2C2=,B3E4=, cos30=, 解得:B3C3= , 则 WC3= , 根据题意得出:WC3 Q=30,C3 WQ=60,A3 WF=30, WQ= = , FW=WA3cos30= =, 则点 A3到 x 轴的距离是:FW+WQ= +=, 故选:D 【总结升华】 此题主要考查了正方形的性质以及锐角三角函数的应用等知识,根据已知得出 B3C3的长是解题关键 类型四、类型四、数形数形归纳归纳 5如图,在标有刻度的直线 l 上,从点 A 开始, 以 AB=1 为直径画半圆,记为第 1 个半圆; 以 BC=2 为直径画半圆,

17、记为第 2 个半圆; 第 8 页 共 8 页 以 CD=4 为直径画半圆,记为第 3 个半圆; 以 DE=8 为直径画半圆,记为第 4 个半圆, 按此规律,继续画半圆,则第 4 个半圆的面积是第 3 个半圆面积的 倍,第 n 个半圆的面积为 (结果保留 ) 【思路点拨】 根据已知图形得出第 4 个半圆的半径是第 3 个半圆的半径, 进而得出第 4 个半圆的面积与第 3 个半 圆面积的关系,得出第 n 个半圆的半径,进而得出答案 【答案与解析】 解:以 AB=1 为直径画半圆,记为第 1 个半圆; 以 BC=2 为直径画半圆,记为第 2 个半圆; 以 CD=4 为直径画半圆,记为第 3 个半圆; 以 DE=8 为直径画半圆,记为第 4 个半圆, 第 4 个半圆的面积为: =8, 第 3 个半圆面积为: =2, 第 4 个半圆的面积是第 3 个半圆面积的=4 倍; 根据已知可得出第 n 个半圆的直径为:2 n-1, 则第 n 个半圆的半径为: 2 2n n-1 2 2 , 第 n 个半圆的面积为: 25 2 n n-2 2 (2 ) 2 故答案为:4, 25 2 n 【总结升华】 此题主要考查了数字变化规律,注意数字之间变化规律,根据已知得出第 n 个半圆的直径为 2 n-1是 解题关键