1、教师姓名 学生姓名 年 级 初二 上课时间 学 科 数学 课题名称 梯形及中位线 梯形及中位线 知识模块知识模块:梯形相关概念梯形相关概念 1、梯形梯形:一组对边平行而另一组对边不平行的四边形叫做梯形 底底:平行的两边叫做底,其中较长的是下底,较短的叫上底 腰腰:不平行的两边叫做腰 高高:梯形两底之间的距离叫做高 2、特殊梯形特殊梯形 直角梯形:直角梯形:一腰垂直于底的梯形叫做直角梯形 特殊梯形 等腰梯形:等腰梯形:两腰相等的梯形叫做等腰梯形 注意:如果同时具备直角梯形和等腰梯形的特征,那么该图形是矩形 3、等腰梯形性质定理等腰梯形性质定理 (1)等腰梯形在同一底上的两个内角相等 (2)等腰梯
2、形的两条对角线相等 (3)等腰梯形是轴对称图形; 4、等腰梯形的判定定理、等腰梯形的判定定理 (1)在同一底边上的两个内角相等的梯形是等腰梯形 (2)对角线相等的梯形是等腰梯形 【例 1】(1)在周长为 30cm 的梯形 ABCD 中,上底 CD=5cm,DEBC 交 AB 于点 E,则 ADE 的周长为_cm; (2)如图,梯形 ABCD 中,ABCD,ACB=90,且 AC 平分BAD,D=120,CD=3cm, 则梯形的周长是_cm A B C D G D C B A E A D C B 【例 2】 如图所示: 在直角梯形 ABCD 中, AB/CD, D=90, AB=BC, AGBC
3、 于点 G, 1 3 CGAB, 求 CD AB 的值. 【例 3】如图所示;在梯形 ABCD 中,AD/BC,CA 平分BCD,DE/BC,交 BC 的延长线于点 E, B=2E.求证:AB=DC. 知识模块知识模块:解决梯形问题常用解决梯形问题常用辅助线辅助线 作法 图形 平移腰,转化为三角平移腰,转化为三角 形、平行四边形形、平行四边形 E C B A D 作高,转化为直角三作高,转化为直角三 角形、矩形角形、矩形 延长两腰,转化为三延长两腰,转化为三 角形角形 平移对角线,转化为平移对角线,转化为 三角形、平行四边形三角形、平行四边形 联结顶点与腰上的中 点,构造全等三角形 【例 4】
4、如图,梯形ABCD中,/ /ABCD,90AB ,ABb,CDa,E、F分 别为AB、CD的中点,则EF的长等于( ) A 2 ba B 3 ba C 2 ba D 3 ba 【例 5】 如图所示;在等腰梯形 ABCD 中, AD/BC, AB=DC.过点 A 作 AEBC, 垂足为点 E, B=60, CAD=45,4 2AC ,求梯形 ABCD 的面积. G A B C D F E H E D C O B A N M CD A B M N C B AD Q P S O CD AB 【例 6】如图所示:在梯形 ABCD 中,AD/BC,B=30,C=60,点 M、N 分别为 BC、DA 的中
5、 点,BC=10, 7 2 MN ,求 AD 的长度. 【例 77】如图所示;在等腰梯形 ABCD 中,AD/BC,AB=DC.且 ACBD,AE 为高,等腰梯形 ABCD 的面积为 49,求高 AE 的长度. 【例 8】如图所示:在直角梯形 ABCD 中,AB/CD,M 是腰 BC 的中点,MNAD 于点 N,求证:梯 形 ABCD 的面积为MN AD. 【例 9】如图,在梯形 ABCD 中,AB/CD,ADBC,对角线 AC、BD 的交点 O,AOB60,又 S、 P、Q 分别是 DO、AO、BC 的中点 求证:SPQ 是等边三角形 【例 10】已知:如图,在直角梯形COAB中,OCAB,
6、以O为原点建立平面直角坐 标系,ABC, ,三点的坐标分别为(80)(810)(0 4)ABC, , 点D为线段BC的中点, 动点P从点O 出发,以每秒 1 个单位的速度,沿折线OABD的路线移动,移动的时间为t秒 (1)求直线BC的解析式; (2)若动点P在线段OA上移动,当t为何值时,四边形OPDC的面积是梯形COAB面积的 2 7 ? (3)动点P从点O出发,沿折线OABD的路线移动过程中,设OPD的面积为S,请直接写出S 与t的函数关系式,并指出自变量t的取值范围 知识模块知识模块:三角形中位线的定义和性质三角形中位线的定义和性质 1. 定义三角形的中位线:联结三角形两边中点的线段,(
7、强调它与三角形的中线的区别); 2. 三角形中位线定理: 三角形的中位线平行于第三边,并且等于它的一半. 3. 梯形中位线定理: 梯形的中位线平行于底边,并且等于两底和的一半. 【例 11】如图所示,在正方形 ABCD 中,对角线 AC、BD 交于点 O,AE 平分BAC,交 BC 于点 E,交 OB 于点 F,求证:CE=2OF A B D C O P x y A B C D E F O G E D CB A S1 S2 S6 S7 S5 S3 S4 N M A B D C 【例 12】如图 1 所示,已知 BD、CE 分别是ABC的外角平分线,过点 A 作AFBD, AGCE, 垂足分别为
8、 F、 G, 连接 FG, 延长 AF、 AG, 与直线 BC 相交, 易证 1 () 2 FGABBCAC (1)若 BD、CE 分别是ABC 的内角平分线(如图 2) ; (2)BD 为ABC 的内角平分线,CE 为ABC 的外角平分线(如图 3) ,则在图 2、图 3 两种情况 下,线段 FG 与ABC 三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况给予证明 【习题 1】(1)等腰梯形的两底之差为 12cm,高为 6cm,则其锐角为_; (2)等腰梯形的对角线为 17,底边分别为 10 和 20,则梯形的面积是_ 【习题 2】如图,在四边形 ABCD 中,M,N 分别是 AB
9、,CD 的中点,AN,BN,DM,CM 划 分四边形所成的 7 个区域的面积分别为 1 S, 2 S, 3 S, 4 S, 5 S, 6 S, 7 S,那么恒成立的关系式是 E F D C O B A ( ) A 2 S+ 6 S= 4 S B 1 S+ 7 S= 4 S C 2 S+ 3 S= 4 S D 1 S+ 6 S= 4 S 【习题 3】如图,在梯形 ABCD 中, 0 / /9012ADBC BCADDBCCD, 0 45ABE, 若 AE=10,求 CE. 【习题 4】如右图,已知梯形 ABCD 中,BC 是下底,ABC=60,BD 平分ABC, 且 BDCD,若梯形周长是 30
10、cm,求此梯形的面积 【习题5】 如图所示;在等腰梯形ABCD中, AD/BC, AB=DC.对角线AC与BD相交于点O, BOC=60, AC=10cm,求梯形的高 DE 的长. A B C D O E A B C D E M G E H Q 【习题 6】如图所示,在等腰梯形ABCD中,/ /ADBC,对角线ACBD,若两底长分别为 ab、,试列出这个梯形的面积S用ab、表示的等式 【习题 7】如图所示,在四边形ABCD中,CDAB,E、F分别是AC、BD的中点 求证: 1 () 2 EFCDAB 【习题 8】如图,在直角梯形 COAB 中,CBOA,以 O 为原点建立直角坐标系,A、C 的坐标分别为 A (10,0) 、C(0,8) ,CB4,D 为 OA 中点,动点 P 自 A 点出发沿 ABCO 的线路移动,速度为 1 个单位/秒,移动时间为 t 秒 (1)求 AB 的长,并求当 PD 将梯形 COAB 的周长平分时 t 的值,并指出此时点 P 在哪条边上; (2)动点 P 在从 A 到 B 的移动过程中,设APD 的面积为 S,试写出 S 与 t 的函数关系式,并指出 t 的取值范围; E F A B C D E F G (3)几秒后线段 PD 将梯形 COAB 的面积分成 1:3 的两部分?求出此 时点 P 的坐标 第26题图 y xO P D C B A