ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:2.33MB ,
资源ID:127455      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-127455.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(著名机构高二数学理科暑假班讲义第2讲 直线与圆的方程 删解析)为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

著名机构高二数学理科暑假班讲义第2讲 直线与圆的方程 删解析

1、直线与圆的方程第2讲满分晋级 解析几何3级双曲线与抛物线初步解析几何级椭圆初步解析几何级直线与圆的方程新课标剖析 当前形势直线与圆在近五年北京卷(理)考查5分高考要求内容要求层次具体要求ABC直线方程的点斜式、两点式及一般式根据确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式)圆的标准方程与一般方程掌握确定圆的几何要素,掌握圆的标准方程与一般方程直线与圆的位置关系掌握直线与圆的位置关系,会求圆的切线方程、弦长等有关直线与圆的问题北京高考解读2008年2009年2010年(新课标)2011年(新课标)2012年(新课标)第7题 5分第19题 5分第19题 5分第19题 5分

2、第19题 5分本讲是在高一春季学过两讲(直线方程六大考点和圆的初步)后的直线与圆的同步讲义,涉及到的新知识点不多,主要是强化直线与圆的灵活与综合应用,进一步体会数形结合的思想每个板块学习前有春季知识回顾,简单的复习一下直线与圆的基础知识点2.1直线的三种形式及其灵活应用春季知识回顾1过点且倾斜角为的直线方程为_ 过点、的直线方程为_【解析】 ;2已知过点和的直线与直线平行,则的值为( )A B C D【解析】 B3已知三边所在直线的方程为:, 判断三角形的形状; 当边上的高为时,求的值【解析】 直角三角形; 或;4平面内与直线的距离为的直线方程为 【解析】 或知识点睛1直线的方程:点斜式方程:

3、两点式方程:一般式:(、不全为零)2点到直线的距离公式点到直线:的距离的计算公式:;两条平行直线和之间的距离为3两条直线的位置关系:,:两条直线相交、平行与重合的条件:相交的条件:平行的条件:且重合的条件:,两条直线垂直的条件:斜率存在的情况下:两条直线为:;:相交的条件:;平行的条件:且;重合的条件:,两条直线垂直的条件:经典精讲考点1:直线方程及其灵活应用【例1】 已知直线过点,且点、到的距离相等,求直线的方程等腰直角三角形的直角顶点和顶点都在直线上,顶点的坐标是,求边,所在的直线方程过点作直线,使它被两直线和所截得的线段被点平分,求直线的方程【解析】 或 直线的方程为,直线的方程为或 【

4、例2】 过点的直线分别交、轴的负半轴于两点,当最小时,求直线的方程【解析】 尖子班学案1【拓2】 已知过点且斜率为的直线与轴分别交于,过作直线的垂线,垂足分别为,求四边形的面积的最小值【解析】 当时,四边形的面积有最小值为目标班学案1【拓3】 将一块直角三角板(角)置于直角坐标系中,已知,点是三角板内一点,现因三角板中部分受损坏(),要把损坏的部分锯掉,可用经过的任意一条直线将其锯成,问如何确定直线的斜率,才能使锯成的的面积最大?【解析】 当直线的斜率为时,取得最大值2.2圆的方程形式及其灵活应用春季知识回顾1求以,为顶点的外接圆的方程【解析】 【点评】当条件与圆心、半径有关时常选择标准方程,

5、当条件是圆经过三个点时,常选用一般方程2若,方程表示的圆的个数为( )A个 B个 C个 D个【解析】 B;3证明:以为直径端点的圆方程为【解析】 ,变形即可得知识点睛1圆的标准方程 以点为圆心,为半径的圆的方程: 圆心在原点的圆的标准方程:2圆的一般方程,()说明:和项的系数相等且都不为零;没有这样的二次项表示以为圆心,为半径的圆当时,方程只有实根,方程表示一个点当时,方程没有实根,因而它不表示任何图形经典精讲考点2:圆的方程及其灵活应用【例3】 求经过点、,圆心在直线上的圆的方程求过点且与轴相切的圆的方程【解析】 三个独立条件确定一个圆,一般用待定系数法求圆的方程如果已知圆心或半径或圆心到直

6、线的距离可用标准式;如果已知圆经过某些点常用一般式在求圆的方程时,应当注意以下几点:确定用圆的标准方程还是一般方程;运用圆的几何性质建立方程求得a、b、r或D、E、F;在待定系数法的应用上,列式要尽量减少未知量的个数提高班学案1【拓1】 过点作圆的两条切线,切点分别为,为坐标原点,则的外接圆方程是( )ABCD【解析】 A【选讲】 在平面直角坐标系中,设二次函数的图象与两坐标轴有三个交点,经过这三个点的圆记为 求实数的取值范围; 求圆的方程【解析】 的取值范围是 圆的方程为(或写为)2.3直线与圆的综合春季知识回顾1设直线过点,且与圆相切,则的斜率是( )A B C D【解析】 C2圆与直线相

7、切于点,则直线的方程为( )A B C D【解析】 D3直线被圆所截得的弦长为_【解析】 4过点作圆的弦,使为的中点,则弦所在直线的方程为( )A B C D【解析】 A主要是对直线与圆的位置关系、过一点作圆的切线以及圆的弦长的回顾知识点睛1直线与圆的位置关系 如果直线到圆心的距离为,圆的半径为,那么:若,则直线与圆相离;若,则直线与圆相切;若,则直线与圆相交 将直线方程与圆的方程联立成方程组,利用消元法消去一个元后,得到关于另一个元的一元二次方程,求出其的值,然后比较判别式与的大小关系,若,则直线与圆相离;若,则直线与圆相切;若,则直线与圆相交2圆与圆的位置关系平面上两圆的位置关系有五种,可

8、以从两圆的圆心距与两圆半径的数量关系来判断设的半径为,的半径为,两圆的圆心距为,当时,两圆外离;当时,两圆外切;当时,两圆相交;当时,两圆内切;当时,两圆内含3当圆与圆相交时,求相交两点所在直线的方程时把两圆的方程作差即可1根据直线与圆的方程判断位置关系和求弦长,一般不用判别式,而是用圆心到直线的距离与半径的关系求解2要注意数形结合,充分利用圆的性质,如“垂直于弦的直径必平分弦”、“圆的切线垂直于经过切点的半径”、“两圆相切时,切点与两圆圆心三点共线”等等,寻找解题途径,减少运算量3圆与直线相切的情形圆心到的距离等于半径,圆心与切点的连线垂直于4 圆与直线相交的情形圆心到的距离小于半径,过圆心

9、而垂直于的直线平分被圆截得的弦;连接圆心与弦的中点的直线垂直于弦;过圆内一点的所有弦中,最短的是垂直于过此点的直径的那条弦,最长的是过这点的直径在解有关圆的解析几何题时,主动地、充分地利用这些性质可以得到新奇的思路,避免冗长的计算经典精讲考点3:直线与圆基础【例4】 已知圆,求的最大值与最小值若圆与圆的公共弦的长为,则 【解析】 的最大值与最小值分别为和 提高班学案2【拓1】 已知满足,则的最小值为 ; 求圆心为,且与已知圆的公共弦所在直线过点的圆的方程【解析】 ; 尖子班学案2【拓2】 如果实数、满足,则的最大值为 ,的最大值为_【解析】 ,;目标班学案2【拓3】 已知圆,为圆上任一点,求的

10、最大、最小值 已知两圆和 若两圆在直线的两侧,求实数的取值范围; 求经过点且和两圆都没有公共点的直线斜率的取值范围【解析】 的最大值为,最小值为 考点4:与圆有关的对称问题【例5】 已知圆,圆与圆关于直线对称,则圆的方程为( )A BC D一条光线从点射出,经轴反射,与圆相切,求反射光线所在的直线的方程【解析】 B 或提高班学案3【拓1】 已知点是圆上任意一点,点关于直线的对称点也在圆上,则实数等于 【解析】尖子班学案3【拓2】 已知圆与以原点为圆心的某圆关于直线对称,求、的值【解析】 目标班学案3【拓3】 自点发出的光线射到轴上,被轴反射,反射光线所在的直线与圆相切,求入射光线和反射光线所在

11、的直线方程,并求光线自到切点所经过的路程【解析】 考点5:圆上的点到直线的距离问题【例6】 已知圆和直线, 若圆上有且只有个点到直线的的距离等于,求半径的取值范围; 若圆上有且只有个点到直线的的距离等于,求半径的取值范围; 若圆上有且只有个点到直线的的距离等于,求半径的取值范围【解析】 方法一采用转化为直线与圆的交点个数来解决;方法二从劣弧的点到直线的最大距离作为观察点入手;【点评】将圆上到直线的距离等于的点的个数转化为两条直线与圆的交点个数,是一种简明的处理方法,对解决这类问题特别有效【备选】 已知圆和点,点在圆上,求面积的最小值【解析】 ;考点6:直线与圆综合【例7】 如图,已知圆心坐标为

12、的圆与轴及直线分别相切于、两点,另一圆与圆外切、且与轴及直线分别相切于、两点 求圆和圆的方程; 过点作直线的平行线,求直线被圆截得的弦的长度【解析】 的方程为,的方程为; 实战演练 【演练1】过原点作圆的两条切线,设切点分别为、,则线段的长为 【解析】 4【演练2】已知圆与直线及都相切,圆心在直线上,则圆的方程为( )A BC D【解析】 B【演练3】直线上的点到圆上的点的最近距离是( )A B C D1【解析】 C【演练4】已知圆和点,若点在圆上且的面积为,则满足条件的点的个数是( )A B C D【解析】 C;【演练5】如图,矩形的两条对角线相交于点,边所在直线的方程为, 点在边所在直线上

13、 求边所在直线的方程; 求矩形外接圆的方程【解析】 【演练6】设点是圆上任一点,求的取值范围【解析】 大千世界 1设圆满足:截轴所得弦长为;被轴分成两段圆弧,其弧长的比为,在满足的所有圆中,求圆心到直线:的距离最小的圆的方程【解析】 设所求的圆的圆心为,半径为,则到轴的距离分别为由圆截轴所对的圆心角为,得圆截轴所得弦长为,故又圆截轴所得弦长为,所以有,从而设到直线的距离为,则,于是,当且仅当时等号成立,此时或故所求的圆的方程为或2点到定点的距离之比为(),求点的轨迹【解析】 以直线为轴,设的坐标分别为,点坐标为,则,化简得,即,即这是一个以为圆心,为半径的圆此圆与轴交于点,这两点是线段的内分点和外分点,是线段的中点,这个圆是以为直径的圆这个圆通常称为阿波罗尼斯圆27第2讲提高-尖子-目标教师版