ImageVerifierCode 换一换
格式:DOCX , 页数:16 ,大小:502.42KB ,
资源ID:126914      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-126914.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(初三数学暑假班讲义第02讲-一元一次不等式与一元一次不等式组-学案)为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

初三数学暑假班讲义第02讲-一元一次不等式与一元一次不等式组-学案

1、高效提分 源于优学 第02讲 一元一次不等式及不等式组 温故知新回忆:一元一次方程的一般解法:(1)去分母:将方程两边的每一项都乘以各分母的最小公倍数,约去分母;(2)去括号:运用去括号法则,把有括号的方程转化为不含括号的方程;(3)移项:把含有未知数的项都移到方程的一边,把不含有未知数的项移到另一边;(4)合并:把方程转化为的形式;(5)未知数系数化为1:方程两边同除以未知数系数。 例如 :解方程: 解:去分母得: 化简得: 去括号得: 移项得: 合并得: 未知数系数化为1,得: 课堂导入知识要点一 不等式概念及性质1、不等式的定义:一般的,用符号“ ”(或“ ”)“”(或“ ”)连接的式子

2、叫做不等式。2、不等式的基本性质:不等式的基本性质1:不等式的两边都加(或减)同一个整式,不等号的方向不变。不等式的基本性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向不变。不等式的基本性质3:不等式的两边都乘(或除以)同一个负数,不等号的方向改变。3、不等式的其他性质(1)对称性,也叫互逆性:若 ,则 。(2)传递性:若, ,则 。(3)若 ,则 同号,反之,若 同号,则 ; 若 ,则 异号,反之,若 异号,则。(4)若 ,则,反之,若,则; 若 ,则 ,反之,若,则。 典例分析例1、下列不等式变形正确的是()A由ab,得a2b2 B由ab,得|a|b|C由ab,得2a2b D由a

3、b,得a2b2例2、下列判断中,正确的序号为 若ab0,则ab0;若ab0,则a0,b0;若ab,c0,则acbc;若ab,c0,则ac2bc2;若ab,c0,则acbc例3、利用不等式的性质把下列不等式化成“xa”或“xa”的形式:(1)2x17; (2)3x7x8;(3)6x112x+6; (4)2x+17x+6学霸说不等式的性质是对不等式进行变形的重要依据,是学好不等式的基础和关键。(1)不等式两边加上(或减去)同一个数(或式),不等号方向不变。如果ab,那么 。(2)不等式两边乘(或除)以同一个正数,不等号的方向不变。如果ab,c0,那么 或 。(3)不等式两边乘(或除)以同一个负数,

4、不等号的方向改变。如果 ,那么 或 。性质(2)和(3)可简记为“负变正不变”。民者赤裸裸的残酷的掠夺,激起了当地土著民族顽强的反抗。举一反三1下面给出了6个式子:30;4x+3y0;x=3;x1;x+23;2x0其中不等式有()A2个 B3个 C4个 D5个2下列不等式变形正确的是()A由ab,得a2b2 B由ab,得|a|b|C由ab,得2a2b D由ab,得a2b23用适当的不等式表示下列关系:(1)a是非负数 ;(2)x与2差不足15 4将下列不等式化成“xa”或“xa”的形式:(1)x175; (2)3知识要点二不等式解集及解法1、不等式的解集(1)能使不等式成立的未知数的值,叫做不

5、等式的解。(2)一个含有未知数的不等式的所有解,组成这个不等式的解集。(3)不等式的解与不等式的解集的区别:不等式的解是指满足这个不等式的未知数的某个值,而不等式的解集是指满足这个不等式的未知数的所有值。2、不等式解集的两种表示方法:(1)用不等式表示;(2)用数轴表示。3、一元一次不等式的概念:左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。4、一元一次不等式的解法:(1)去分母,(2)去括号,(3)移项,(4)合并同类项,(5)系数化1。5、一元一次不等式与一次函数:(1)利用一次函数的图象解一元一次不等式 (或 )。(2)利用一次函数的图

6、象解一元一次不等式 (或)6、一元一次不等式组的概念:一般的,关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组。7、一元一次不等式组的解集的概念:一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。8、一元一次不等式组的解法步骤一:根据不等式的性质求出每一个不等式的解集步骤二:将每一个不等式的解集利用数轴进行合并得到不等式组的解由两个一元一次不等式组成的不等式组,可以归结为下述四种基本类型:(表中)不等式图示解集(大大取大)(小小取小)(大小小大中间找)无解(大大小小解不了)典例分析例1、解不等式(组),并将解集在数轴上表示出来:(1)+1x3

7、; (2)例2、不等式组的解集是x1,则m的取值范围是()Am1 Bm1 Cm0 Dm0例3、已知不等式4xa0的正整数解是1,2,则a的取值范围是()A8a12 B8a12C8a12 D8a12例4、已知不等式组有解,则n的取值范围是 例5、关于x的两个不等式1与13x0(1)若两个不等式的解集相同,求a的值;(2)若不等式的解都是的解,求a的取值范围例6、直线y=kx+3经过点A(2,1),则不等式kx+30的解集是()Ax3 Bx3 Cx3 Dx0例7、如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+bkx+6的解集是 例8、如图,函数y=2x+3与y=x+

8、m的图象交于P(n,2)(1)求出m、n的值;(2)直接写出不等式x+m2x+3的解集;(3)求出ABP的面积举一反三1不等式x40的正整数有()A1个 B2个 C3个 D无数多个2不等式组的解表示在数轴上,正确的是()ABCD3已知不等式组的解集如图所示(原点没标出),则a的值为()A1 B0 C1 D24如图,一次函数y=ax+b的图象经过A(2,0)、B(0,1)两点,则关于x的不等式ax+b0的解集是 5如图,直线y=kx+b与y=x交于A(3,1)与x轴交于B(6,0),则不等式组0的解集为 6若不等式(m2)xm2的解集是x1,则m的取值范围是 7不等式组的解集是xm2,则m的取值

9、应为 8已知关于x的不等式组的整数解共有6个,则a的取值范围是 9解下列不等式(1)5x62(x+3) (2)1知识要点三 不等式应用题1、一元一次不等式组的应用列不等式组解决实际问题的一般步骤(1)找:找出问题中的不等关系;(2)设:设出未知数;(3)列:根据前面的不等关系列出不等式组;(4)解:解不等式组;(5)答:检验后答出结果。 典例分析例1、某小区为了绿化环境,计划分两次购进A、B两种花草,第一次分别购进A、B两种花草30棵和15棵,共花费675元;第二次分别购进A、B两种花草12棵和5棵两次共花费940元(两次购进的A、B两种花草价格均分别相同)(1)A、B两种花草每棵的价格分别是

10、多少元?(2)若购买A、B两种花草共31棵,且B种花草的数量少于A种花草的数量的2倍,请你给出一种费用最省的方案,并求出该方案所需费用例2、为了更好地治理木兰溪水质,保护环境,市治污公司决定购买10台污水处理设备,现有A B两种设备,A B单价分别为a万元/台 b万元/台 月处理污水分别为240吨/月 200吨/月,经调查 买一台A型设备比买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元(1)求a、b的值(2)经预算,市治污公司购买污水处理器的资金不超过105万元,你认为该公司有哪几种购买方案?(3)在(2)的条件下,若每月处理的污水不低于2040吨,为了节约资金,请你为治污

11、公司设计一种最省钱的方案例3、某蔬菜培育中心决定向某灾区配送无辐射蔬菜和水果共3200箱,其中水果比蔬菜多800箱(1)求水果和蔬菜各有多少箱?(2)现计划租用甲、乙两种货车共8辆,一次性将这批水果和蔬菜全部运往该乡中小学已知每辆甲种货车最多可装水果400箱和蔬菜100箱,每辆乙种货车最多可装水果和蔬菜各200箱,则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费4000元,乙种货车每辆需付运费3600元运输部门应选择哪种方案可使运费最少?最少运费是多少元?举一反三1某产品生产车间有工人10名已知每名工人每天可生产甲种产品12个或乙种产

12、品10个,且每生产一个甲种产品可获利润100元,每生产一个乙种产品可获利润180元在这10名工人中,如果要使此车间每天所获利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适2为了能以“更新、更绿、更洁、更宁”的城市形象迎接2011年大运会的召开,深圳市全面实施市容市貌环境提升行动某工程队承担了一段长为1500米的道路绿化工程,施工时有两张绿化方案:甲方案是绿化1米的道路需要A型花2枝和B型花3枝,成本是22元;乙方案是绿化1米的道路需要A型花1枝和B型花5枝,成本是25元现要求按照乙方案绿化道路的总长度不能少于按甲方案绿化道路的总长度的2倍(1)求A型花和B型花每枝的成本分别

13、是多少元?(2)求当按甲方案绿化的道路总长度为多少米时,所需工程的总成本最少?总成本最少是多少元? 课堂闯关初出茅庐1、如果ab,那么下列不等式不成立的是()Aa5b5 B5a5b C D0.5a0.5b2、不等式无解,则a的取值范围是()Aa2 Ba2 Ca2 Da23、若关于x的不等式2xm0的正整数解只有4个,则m的取值范围是()A8m10 B8m10 C8m10 D4m54、若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式中总是成立的是()Aab0 Bab0 Ca2+b0 Da+b05、若关于x不等式组有且只有四个整数解,且一次函数y=(k+3)x+k+5的图象不经过第三

14、象限,则符合题意的整数k有()个A4 B3 C2 D16、下列各式中,正确的有 (把所有正确的答案都写上)由ab可得acbc;由2x6可得x3;由xz2yz2可得xy;由xy可得xz2yz2;由2x=2可得x=0;由2x2可得x07、如图,已知函数y=ax+2与y=bx3的图象交于点A(2,1),则根据图象可得不等式axbx5的解集是 优学学霸8、 已知关于x、y的方程组的解满足不等式3x2y,求实数a的取值范围9、如图,请根据图象所提供的信息解答下列问题:(1)当x 时,kx+bmxn;(2)不等式kx+b0的解集是 ;(3)交点P的坐标(1,1)是二元一次方程组: 的解;(4)若直线l1分

15、别交x轴、y轴于点M、A,直线l2分别交x轴、 y轴于点B、N,求点M的坐标和四边形OMPN的面积 考场直播1、【2016丰台】下列不等式变形正确的是()A由ab,得a2b2 B由ab,得abC由ab,得 D由ab,得acbc2、【2016泉港】如图,经过点B(2,0)的直线y=kx+b与直线y=4x+2相交于点A(1,2),4x+2kx+b0的解集为()Ax2 B2x1Cx1 Dx1 自我挑战1、若xy,则下列不等式中不一定成立的是()Ax+1y+1 B2x2y C Dx2y22、若关于x的不等式组无解,则a的取值范围是()Aa3 Ba3 Ca3 Da33、已知不等式2xa0的正整数解恰好是

16、1,2,3,4,5,那么a的取值范围是()Aa10 B10a12 C10a12 D10a124、直线l的解析式是y=kx+2,其中k是不等式组的解,则直线l的图象不经过()A第一象限 B第二象限 C第三象限 D第四象限5、己知一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:k0;a0;关于x的方程kx+b=x+a的解为x=3;x3时,y1y2正确的个数是()A1 B2 C3 D46、已知2x+y3且1xy4,则z=2x3y的取值范围是 7、如图,直线y=x+m与y=nx+4n(n0)的交点的横坐标为2,则关于x的不等式x+mnx+4n0的整数解是 8、已知x=1满足不等式组,求a的取值范围9、观察如图,对照图象,请回答下列问题:(1)当x取何值时,2x5=x+1?(2)当x取何值时,2x5x+1?(3)当x取何值时,2x5x+1?10、某电脑经销商计划购进一批电脑机箱和液晶显示器,已知:购进电脑机箱2台和液晶显示器5台,共需要资金4120元;购进电脑机箱10台和液晶显示器8台,共需要资金7000元(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商购进这两种商品50台,其中电脑机箱不少于24台根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元该经销商希望销售完这两种商品,所获利润不少于4100元试问:该经销商有几种进货方案?15