ImageVerifierCode 换一换
格式:DOCX , 页数:12 ,大小:324.87KB ,
资源ID:126900      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-126900.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(初三数学寒假班第05讲-直角三角形的边角关系(提高)-学案)为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

初三数学寒假班第05讲-直角三角形的边角关系(提高)-学案

1、学科教师辅导讲义学员编号: 年 级:九年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第01讲-直角三角形的边角关系授课类型T同步课堂P实战演练S归纳总结教学目标 掌握三角函数的几何意义; 熟练进行三角函数值的相关计算; 熟练利用边角关系进行解三角形; 熟练应用边角关系构造直角三角形解决实际问题; 进一步提高数学建模、实际应用的能力。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理二、 知识概念(一) 三角函数的概念1、正弦,余弦,正切的概念(及书写规范)如图,在 中,(1) (2) (3) 2、定义中应该注意的几个问题(1)sinA、cosA

2、、tanA是在直角三角形中定义的,A是锐角(注意数形结合,构造直角三角形)(2)sinA、 cosA、tanA是一个比值(数值)(3)sinA、 cosA 、tanA的大小只与A的大小有关,而与直角三角形的边长无关。 (二)特殊角的三角函数值度 数sincostan 30 45160(三)三角函数之间的关系1、余角关系:在A+B=90时 2、同角关系sin2A+cos2A=1. (四)斜坡的坡度1、仰角、俯角、坡度、坡角和方向角(1)仰角:视线在水平线上方的角叫仰角俯角:视线在水平线下方的角叫俯角(2)坡度:坡面的铅直高度和水平宽度的比叫做坡度(或叫坡比),用字母i表示坡角:坡面与水平面的夹角

3、叫坡角,用表示,则有i_tan 如图所示, ,即坡度是坡角的正切值(3)方向角:平面上,通过观察点O作一条水平线(向右为东向)和一条铅垂线(向上为北向),则从O点出发的视线与水平线或铅锤线所夹的角,叫做观测的方向角(五)解三角形及其应用1、解直角三角形应用题的步骤(1)根据题目已知条件,画出平面几何图形,找出已知条件中各量之间的关系(2)若是直角三角形,根据边角关系进行计算;若不是直角三角形,应大胆尝试添加辅助线,构造直角三角形进行解决2、解三角形关系解直角三角形时,正确选择关系式是关键:(1)求边时一般用未知边比已知边,去找已知角的某一个三角函数;(2)求角时一般用已知边比已知边,去找未知角

4、的某一个三角函数;(3)求某些未知量的途径往往不唯一,其选择的原则:尽量直接使用原始数据;计算简便;若能用乘法应避免除法 3、利用(三角函数)解直角三角形解实际应用题的一般步骤: 弄清题中名词术语的意义(如俯角、仰角、坡角、方向角等),然后根据题意画出几何图形,建立数学模型; 将实际问题中的数量关系归结为直角三角形中元素之间的关系,当有些图形不是直角三角形时,可添加适当的辅助线,把它们分割成直角三角形; 寻求基础直角三角形,并解这个三角形或设未知数进行求解考点一:锐角三角函数例1、如图,在RtABC中,C=90,CD是斜边AB上的高,下列线段的比值不等于cosA的值的是()A B C D例2、

5、已知A为锐角,且tanA=,则A的取值范围是()A0A30 B30A45C45A60 D60A90例3、计算:sin45+cos230+2sin60考点二: 坡度、坡角实际问题例1、如图,某水渠的横断面是梯形,已知其斜坡AD的坡度为1:1.2,斜坡BC的坡度为1:0.8,现测得放水前的水面宽EF为3.8米,当水闸放水后,水渠内水面宽GH为6米则放水后水面上升的高度是()米A1.2 B1.1 C0.8 D2.2例2、如图,某仓储中心有一斜坡AB,其坡度为i=1:2,顶部A处的高AC为4m,B、C在同一水平地面上(1)求斜坡AB的水平宽度BC;(2)矩形DEFG为长方体货柜的侧面图,其中DE=2.

6、5m,EF=2m,将该货柜沿斜坡向上运送,当BF=3.5m时,求点D离地面的高(结果保留根号)考点三:解三角形例1、如图,已知RtABC中,斜边BC上的高AD=3,cosB=,则AC的长为()A3 B3.5 C4.8 D5例2、如图,ABC中,ACB=90,sinA=,BC=8,D是AB中点,过点B作直线CD的垂线,垂足为点E(1)求线段CD的长; (2)求cosABE的值 考点四:三角函数综合应用例1、如图,某日,正在我国南海海域作业的一艘大型渔船突然发生险情,相关部门接到求救信号后,立即调遣一架直升飞机和一艘正在南海巡航的渔政船前往救援,当飞机到达海面3000m的高空C处时,测得A处渔政船

7、的俯角为45,测得B处发生险情渔船的俯角为30,此时渔政船和渔船的距离AB是()A3000m B3000()mC3000()m D1500m例2、如图,小山岗的斜坡AC的坡角=45,在与山脚C距离200米的D处,测得山顶A的仰角为26.6,小山岗的高AB约为(结果取整数,参考数据:sin26.6=0.45,cos26.6=0.89,tan26.6=0.50)()A164m B178m C200m D1618m例3、如图,某渔船在海面上朝正东方向匀速航行,在A处观测到灯塔M在北偏东60方向上,航行半小时后到达B处,此时观测到灯塔M在北偏东30方向上,那么该船继续航行到达离灯塔距离最近的位置所需时

8、间是()A10分钟 B15分钟 C20分钟 D25分钟P(Practice-Oriented)实战演练实战演练 课堂狙击1、如图,点A为边上任意一点,作ACBC于点C,CDAB于点D,下列用线段比表示cos的值,错误的是()A B C D2、如图,将ABC放在每个小正方形的边长为1的网格中,点A,B,C均在格点上,则tanA的值是()A B C2 D3、是锐角,且,则()A030 B3045 C4560 D60904、如图,已知AD是等腰ABC底边上的高,且sinB=点E在AC上且AE:EC=2:3则tanADE等于()A B C D5、斜坡的倾斜角为,一辆汽车沿这个斜坡前进了500米,则它上

9、升的高度是()A500sin米 B米 C500cos米 D米6、如图,斜面AC的坡度(CD与AD的比)为1:2,AC=3米,坡顶有一旗杆BC,旗杆顶端B点与A点有一条彩带相连,若AB=10米,则旗杆BC的高为()A(3+)米 B8米 C6米 D5米7、如图,热气球从C地垂直上升2km到达A处,观察员在A处观察B地的俯角为30,则B、C两地之间的距离为()Akm B C2km D28、小敏家对面新建了一幢图书大厦,小敏在自家窗口测得大厦顶部的仰角为45,大厦底部的仰角为30,如图所示,量得两幢楼之间的距离为20米(1)求出大厦的高度BD;(2)求出小敏家的高度AE9、2016年10月强台风“海马

10、”登录深圳,伴随着就是狂风暴雨梧桐山山坡上有一棵与水平面垂直的大树,台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面(如图所示)已知山坡的坡角AEF=23,量得树干的倾斜角为BAC=38,大树被折断部分和坡面所成的角ADC=60,AD=3m(1)求DAC的度数;(2)求这棵大树折断前的高度(结果保留根号) 课后反击1、如图,在RtABC中,C=90,CD是斜边AB上的高,下列线段的比值不等于cosA的值的是()A B C D2、如图,在84的矩形网格中,每格小正方形的边长都是1,若ABC的三个顶点在图中相应的格点上,则tanACB的值为()A B C3 D3、若090,则下列说法

11、不正确的是()Asin随的增大而增大 Bcos随的增大而减小Ctan随的增大而增大 Dsin、cos、tan的值都随的增大而增大4、如图,已知RtABC中,斜边BC上的高AD=3,cosB=,则AC的长为()A3 B3.5 C4.8 D55、某人沿倾斜角为30的斜坡前进6米,则他上升的最大高度为()A3米 B3米 C米 D2米6、如图,某天小明发现阳光下电线杆AB的影子落在土坡的坡面CD和地面BC上,量的CD=8米,BC=20米,斜坡CD的坡度比为1:,且此时测得1米杆的影长为2米,则电线杆的高度为()A(14+2)米 B28米 C(7+)米 D9米7、如图,在一个20米高的楼顶上有一信号塔D

12、C,某同学为了测量信号塔的高度,在地面的A处测得信号塔下端D的仰角为30,然后他正对塔的方向前进了8米到达地面的B处,又测得信号塔顶端C的仰角为45,CDAB于点E,E、B、A在一条直线上信号塔CD的高度为()A20 B208 C2028 D20208、如图,岛P位于岛Q的正西方,P、Q两岛间的距离为20(1+)海里,由岛P、Q分别测得船R位于南偏东30和南偏西45方向上,则船R到岛P的距离为()A40海里 B40海里 C40海里 D40海里9、计算:(1)+tan60 (2)2cos45sin452sin30tan45+tan6010、据调查,超速行驶是引发交通事故的主要原因之一,所以规定以

13、下情境中的速度不得超过15m/s,在一条笔直公路BD的上方A处有一探测仪,如平面几何图,AD=24m,D=90,第一次探测到一辆轿车从B点匀速向D点行驶,测得ABD=31,2秒后到达C点,测得ACD=50(tan310.6,tan501.2,结果精确到1m)(1)求B,C的距离 (2)通过计算,判断此轿车是否超速直击中考1、【2016益阳】小明利用测角仪和旗杆的拉绳测量学校旗杆的高度如图,旗杆PA的高度与拉绳PB的长度相等小明将PB拉到PB的位置,测得PBC=(BC为水平线),测角仪BD的高度为1米,则旗杆PA的高度为()A B C D2、【2013深圳】如图,已知l1l2l3,相邻两条平行直

14、线间的距离相等,若等腰直角ABC的三个顶点分别在这三条平行直线上,则sin的值是()A B C D3、【2016深圳】某兴趣小组借助无人飞机航拍校园如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75,B处的仰角为30已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度(结果保留根号)S(Summary-Embedded)归纳总结重点回顾1、 三角函数的定义2、 特殊角的三角函数值3、 利用直角三角形边角关系解三角形4、 综合利用解三角形知识,构建直角三角形模型,解决实际问题名师点拨1、 熟练掌握特殊角的三角函数值是提高计算准确度的必要条件2、 明确坡角、仰角、俯角、方向角概念是解决问题的前提3、根据实际情况构建直角三角形模型,并求解实际三角形中的边角大小是解决问题关键学霸经验 本节课我学到 我需要努力的地方是12