ImageVerifierCode 换一换
格式:DOCX , 页数:11 ,大小:803.51KB ,
资源ID:126796      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-126796.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(中考数学二轮复习讲义第07讲-反比例函数-学案)为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

中考数学二轮复习讲义第07讲-反比例函数-学案

1、学科教师辅导讲义学员编号: 年 级:中 考课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第07讲-反比例函数授课类型T同步课堂P实战演练S归纳总结教学目标 理解反比例函数的概念,能根据已知条件确定反比例函数的解析式; 会画反比例函数图象,根据图象和解析式探索并理解其基本性质; 能用反比例函数解决简单实际问题。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理(一)、反比例函数的概念一般地,形如_ (k是常数,k0)的函数叫做反比例函数1反比例函数y中的是一个分式,所以自变量 ,函数与x轴、y轴无交点2反比例函数解析式可以写成xyk(k0),它表明在反比例

2、函数中自变量x与其对应函数值y之积,总等于已知常数k.(二)、反比例函数的图象与性质1图象:反比例函数的图象是双曲线2性质(1)当k0时,双曲线的两支分别在_ _象限,在每一个象限内,y随x的增大而_ _; 当k0时,双曲线的两支分别在_ _象限,在每一个象限内,y随x的增大而_ _注意双曲线的两支和坐标轴无限靠近,但永远不能相交(2)双曲线是轴对称图形,直线yx或yx是它的对称轴;双曲线也是中心对称图形,对称中心是坐标原点(三)、反比例函数的应用1利用待定系数法确定反比例函数解析式由于反比例函数y中只有一个待定系数,因此只要一对对应的x,y值,或已知其图象上一个_ _的坐标即可求出k,进而确

3、定反比例函数的解析式2反比例函数的实际应用解决反比例函数应用问题时,首先要找出存在反比例关系的两个变量,然后建立反比例函数模型,进而利用反比例函数的有关知识加以解决考点一: 反比例函数的定义与表达式例1、下列函数:xy=1,y=,y=,y=,y=2x2中,是y关于x的反比例函数的有()个A1个 B2个 C3个 D4个例2、函数是反比例函数,则m的值是()Am=1 Bm=1 Cm= Dm=1考点二、反比例函数的图象与性质例1、对于反比例函数y=图象对称性的叙述错误的是()A关于原点对称 B关于直线y=x对称C关于直线y=x对称 D关于x轴对称例2、如图,在同一直角坐标系中,函数y=与y=kx+k

4、2的大致图象是()A B C D例3、已知反比例函数的图象经过点(2,4),当x2时,所对应的函数值y的取值范围是()A2y0 B3y1 C4y0 D0y1例4、反比例函数y的图象在第一、三象限,则m的取值范围是_考点三、反比例函数解析式的确定例1、如图,两个反比例函数y1=(其中k10)和y2=在第一象限内的图象依次是C1和C2,点P在C1上矩形PCOD交C2于A、B两点,OA的延长线交C1于点E,EFx轴于F点,且图中四边形BOAP的面积为6,则EF:AC为()A1 B2 C21 D2914例2、如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比

5、例函数y=(x0)与AB相交于点D,与BC相交于点E,若BD=3AD,且ODE的面积是9,则k=()A B C D12考点四、反比例函数解析式的确定例1、如图,直线y2x与反比例函数y的图象在第一象限的交点为A,AB垂直于x轴,垂足为B,已知OB1,求点A的坐标和这个反比例函数的解析式考点五: 反比例函数与一次函数例1、正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点B的横坐标为2,当y1y2时,x的取值范围是()Ax2或x2 Bx2或0x2C2x0或0x2 D2x0或x2例2、如图,反比例函数y=与一次函数y=ax+b的图象交于点A(2,2)、B(,n)(1)求这

6、两个函数解析式;(2)将一次函数y=ax+b的图象沿y轴向下平移m个单位,使平移后的图象与反比例函数的图象有且只有一个交点,求m的值P(Practice-Oriented)实战演练实战演练 课堂狙击1、下列两个变量之间的关系为反比例关系的是()A匀速行驶过程中,行驶路程与时间的关系 B体积一定时,物体的质量与密度的关系C质量一定时,物体的体积与密度的关系 D长方形的长一定时,它的周长与宽的关系2、函数y=(m2m)是反比例函数,则()Am0 Bm0且m1 Cm=2 Dm=1或23、当k0时,反比例函数y=和一次函数y=kx+2的图象大致是()A B C D4、已知点P(x,y)满足,则经过点P

7、的反比例函数y=的图象经过()A第一、二象限 B第三、四象限 C第一、三象限 D第二、四象限5、在反比例函数的每一条曲线上,y都随着x的增大而减小,则k的值可以是()A1 B1 C2 D36、若点A(5,y1),B(3,y2),C(2,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()Ay1y3y2 By1y2y3 Cy3y2y1 Dy2y1y37、如图,点A、C为反比例函数y=图象上的点,过点A、C分别作ABx轴,CDx轴,垂足分别为B、D,连接OA、AC、OC,线段OC交AB于点E,点E恰好为OC的中点,当AEC的面积为时,k的值为()A4 B6 C4 D68、如图,在平面

8、直角坐标系中,点P(1,4)、Q(m,n)在函数y=(x0)的图象上,当m1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y轴的垂线,垂足为点C、DQD交PA于点E,随着m的增大,四边形ACQE的面积()A减小 B增大 C先减小后增大 D先增大后减小9、如图,反比例函数图象在第一象限的分支上有一点C(1,3),过点C的直线y=kx+bk0与x轴交于点A(1)求反比例函数的解析式;(2)当直线与反比例函数的图象在第一象限内的另一交点的横坐标为3时,求COD的面积10、已知反比例函数和一次函数y=2x1,其中一次函数的图象经过(a,b),(a+k,b+k+2)两点(1)求反比

9、例函数的解析式;(2)求反比例函数与一次函数两个交点A、B的坐标:(3)根据函数图象,求不等式2x1的解集;(4)在(2)的条件下,x轴上是否存在点P,使AOP为等腰三角形?若存在,把符合条件的P点坐标都求出来;若不存在,请说明理由 课后反击1、下列函数中,y是x的反比例函数有()(1)y=3x;(2)y=;(3);(4)xy=3;(5);(6)y=2x2;(7)A(2)(4) B(2)(3)(5) C(2)(7) D(1)(3)(4)(6)2、已知函数y=(m+2)是反比例函数,且图象在第二、四象限内,则m的值是()A3 B3 C3 D3、函数y=axa与y=(a0)在同一直角坐标系中的图象

10、可能是()A B C D4、已知反比例函数y=,下列结论不正确的是()A图象必经过点(1,2) By随x的增大而增大C图象在第二、四象限内 D若x1,则0y25、如图,直线l和双曲线(k0)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别是C、D、E,连接OA、OB、OP,设AOC面积是S1,BOD面积是S2,POE面积是S3,则()AS1S2S3 BS1S2S3CS1=S2S3 DS1=S2S36、如图,平面直角坐标系中,点A是x轴负半轴上一个定点,点P是函数(x0)上一个动点,PBy轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会(

11、)A逐渐增大 B先减后增 C逐渐减小 D先增后减7、若点A(5,y1),B(3,y2),C(2,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()Ay1y3y2 By1y2y3 Cy3y2y1 Dy2y1y38、如图,已知矩形OABC面积为,它的对角线OB与双曲线相交于D且OB:OD=5:3,则k=()A6 B12 C24 D369、如图,已知矩形OABC的两边OA、OC分别落在x轴、y轴的正半轴上,顶点B的坐标是(6,4),反比例函数y=(x0)的图象经过矩形对角线的交点E,且与BC边交于点D(1)求反比例函数的解析式与点D的坐标;直接写出ODE的面积;(2)若P是OA上的动

12、点,求使得“PD+PE之和最小”时的直线PE的解析式直击中考1、【2009深圳】如图,反比例函数y=的图象与直线y=x的交点为A,B,过点A作y轴的平行线与过点B作x轴的平行线相交于点C,则ABC的面积为( )A8 B6 C4 D22、【2011鞍山】在同一个直角坐标系中,函数y=kx和的图象的大致位置是( )A BCD3、【2016深圳】如图,四边形ABCO是平行四边形,OA=2,AB=6,点C在x轴的负半轴上,将ABCO绕点A逆时针旋转得到ADEF,AD经过点O,点F恰好落在x轴的正半轴上,若点D在反比例函数y=(x0)的图象上,则k的值为 4、【2015深圳】如图,已知点A在反比例函数y

13、=(x0)上,作RtABC,点D为斜边AC的中点,连DB并延长交y轴于点E若BCE的面积为8,则k= S(Summary-Embedded)归纳总结重点回顾(一)、反比例函数的概念一般地,形如_ y或ykx1 (k是常数,k0)的函数叫做反比例函数(二)、反比例函数的图象与性质1图象:反比例函数的图象是双曲线2性质(1)当k0时,双曲线的两支分别在_一、三_象限,在每一个象限内,y随x的增大而_减小 _; 当k0时,双曲线的两支分别在_二、四_象限,在每一个象限内,y随x的增大而_增大_注意双曲线的两支和坐标轴无限靠近,但永远不能相交(2)双曲线是轴对称图形,直线yx或yx是它的对称轴;双曲线也是中心对称图形,对称中心是坐标原点(三)、反比例函数的应用由于反比例函数y中只有一个待定系数,因此只要一对对应的x,y值,或已知其图象上一个_点_的坐标即可求出k,进而确定反比例函数的解析式名师点拨1.由于双曲线自变量的取值范围是x0的实数,故其性质强调在每个象限内y随x的变化而变化的情况2反比例函数图象的分布取决于k的符号,当k0时,图象在第一、三象限,当k0时,图象在第二、四象限3.过双曲线上任意一点作x轴、y轴的垂线,所得矩形的面积为|k|;过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形的面积S|k|.学霸经验 本节课我学到 我需要努力的地方是11