ImageVerifierCode 换一换
格式:DOCX , 页数:13 ,大小:590.33KB ,
资源ID:126754      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-126754.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(中考数学一轮复习讲义第12讲-图形的相似(提高)-学案.doc)为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

中考数学一轮复习讲义第12讲-图形的相似(提高)-学案.doc

1、学科教师辅导讲义学员编号: 年 级:九年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第12讲-图形的相似授课类型T同步课堂P实战演练S归纳总结教学目标 熟练利用成比例线段计算线段的长度; 掌握平行线分线段成比例的常见模型,并准确计算线段长度; 掌握判定三角形相似的三个条件,熟练进行相关证明; 熟练运用三角形相似解决测高等实际问题; 理解三角形相似的性质及图形的位似,并能进行简单计算。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理二、 知识概念(一)比例的性质 1.比例中项; 2.合分比性质; 3.等比性质(二)平行线分线段成比例定理 1.两

2、条直线被一组平行线所截,所得的线段成比例。2.如右图所示,所得的对应线段成比例的有:= ,等等。3.所得的线段必须是对应的,否则不成比例。4.平行线段分线段成比例定理的常见变形如下图所示: (三)平行线分线段成比例定理的推论 平行于三角形一边的直线与其他两边相交,截得的对应线段成比例。 1.一定要注意三边的对应的关系,不要写错 2.平行于三角形的一边的直线可以与三角形的两边相交,也可以与三角形的两边的延长线相交,如下图所示,若DEBC,则有(四)相似三角的判定方法 1、如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似 2、如果一个三角的两条边与另一个三角形的两条边

3、对应成比例,并且夹角相等,那么这两个三角形相似 3、如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似 (五)相似三角形基本类型 1、平行线型:常见的有如下两种,DEBC,则ADEABC 2、相交线型:常见的有如下四种情形 (1)如图,已知1=B,则由公共角A得,ADEABC (2)如下左图,已知1=B,则由公共角A得,ADCACB (3)如下右图,已知B=D,则由对顶角1=2得,ADEABC 3、旋转型:已知BAD=CAE,B=D,则ADEABC, 右图为常见的基本图形 4、母子型:已知ACB=90,ABCD,则CBDABCACD 5、斜交型: 如图:其中1=2

4、,则ADEABC称为“斜交型”的相似三角形。 (有“反A共角型”、“反A共角共边型”、 “蝶型”) 6、垂直型:有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”)”“三垂直型”) (六)黄金分割在线段AB上,点C把线段AB分成两条线段AC和BC(ACBC),如果ACAB,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比,黄金比约为0.618,一条线段的黄金分割点有2个。(七)相似三角形的性质 1、相似三角形对应角相等,对应边成比例. 2、相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比. 3、相似三角形周长的比等于相似比. 4、相似

5、三角形面积的比等于相似比的平方.(八)利用三角形相似测量高度方法 1、利用阳光下的影子测量物高:根据太阳光线是平行的,寻找相似三角形. 在同一时刻, 2、利用标杆测量物高 3、利用镜子原理测量物高(九)图形的位似 1、位似图形的定义:位似图形的定义:两个多边形不仅相似,而且对应顶点的连线相交于一点,并且对应边互相平行或位于同一直线上,像这样的两个图形叫做位似图形,这个交点叫做位似中心,这时的相似比又称为位似比。 2、图形位似的性质:位似图形的任意一对对应点与位似中心在同一直线上,它们到位似中心的距离之比等于相似比。*位似图形对应线段的比等于相似比; *位似图形的对应角都相等;*位似图形对应点连

6、线的交点是位似中心; *位似图形面积的比等于相似比的平方;*位似图形高、周长的比都等于相似比; *位似图形对应边互相平行或在同一直线上。考点一:成比例线段与平行线分线段成比例例1、已知,(1)求的值; (2)如果,求x的值例2、如图,ACBD,AD、BC相交于E,EFBD,求证:+=考点二:三角形相似的条件例1、如图,在正方形ABCD中,E是AD的中点,F是CD上一点,且CF=3FD则图中相似三角形的对数是()A1 B2 C3 D4例2、在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/秒的速度移动,点Q沿DA边从点D开始向点A以1cm/秒的速度移动,如果P

7、、Q同时出发,用t(秒)表示运动时间(0t6),那么当t为何值时,APQ与ABD相似?说明理由考点三: 利用三角形相似测高例1、如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m的竹竿的影长是0.8m,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),他先测得留在墙壁上的影高为1.2m,又测得地面的影长为2.6m,请你帮她算一下,树高是()A3.25m B4.25m C4.45m D4.75m例2、如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标

8、杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,求建筑物的高考点四:相似三角形的性质与位似 例1、一块材料的形状是锐角三角形ABC,边BC=12cm,高AD=8cm,把它加工成矩形零件如图,要使矩形的一边在BC上,其余两个顶点分别在AB,AC上且矩形的长与宽的比为3:2,求这个矩形零件的边长例2、ABC经过一定的运动得到A1B1C1,然后以点A1为位似中心按比例尺A1B2:A1B1=2:1,A1B1C1放大为A1B2C2,如果ABC上的点P的坐标为(a,b)

9、,那么这个点在A1B2C2中的对应点P2的坐标为()A(a+3,b+2) B(a+2,b+3)C(2a+6,2b+4) D(2a+4,2b+6)P(Practice-Oriented)实战演练实战演练 课堂狙击1、已知,则的值是()A B C D2、如图,A=B=90,AB=7,AD=2,BC=3,在边AB上取点P,使得PAD与PBC相似,则这样的P点共有()A1个 B2个 C3个 D4个3、如图,D、E分别是ABC的边AB、BC上的点,且DEAC,AE、CD相交于点O,若SDOE:SCOA=1:25,则SBDE与SCDE的比是()A1:3 B1:4 C1:5 D1:254、已知,如图所示的一

10、张三角形纸片ABC,边AB的长为20cm,AB边上的高为25cm,在三角形纸片ABC中从下往上依次裁剪去宽为4cm的矩形纸条,若剪得的其中一张纸条是正方形,那么这张正方形纸条是()A第4张 B第5张 C第6张 D第7张5、如图,直线l1l2l3,一等腰直角三角形ABC的三个顶点A,B,C分别在l1,l2,l3上,ACB=90,AC交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则的值为()A B C D6、如图所示,RtABC中,已知BAC=90,AB=AC=2,点D在BC上运动(不能到达点B,C),过点D作ADE=45,DE交AC于点E(1)求证:ABDDCE;(2)当ADE是

11、等腰三角形时,求AE的长7、如图,为了测量路灯S的高度,把一根1.5m长的竹竿AB竖立在地面上,测得竹竿的影长BC为1m,然后拿着竹竿沿DB方向远离路灯方向走了4米到B,再把竹竿竖立在地面上(即AB),测得竹竿的影长为1.8m,求路灯的高度8、如图,AC是O的直径,BC是O的弦,点P是O外一点,连接PB、AB,PBA=C(1)求证:PB是O的切线;(2)连接OP,若OPBC,且OP=8,O的半径为2,求BC的长 课后反击1、如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A(3,

12、2) B(3,1)C(2,2) D(4,2)2、如图,ACBD,AD与BC交于点E,过点E作EFBD,交线段AB于点F,则下列各式错误的是()A= B= C+=1 D=3、为了加强视力保护意识,小明要在书房里挂一张视力表由于书房空间狭小,他想根据测试距离为5m的大视力表制作一个测试距离为3m的小视力表如图,如果大视力表中“E”的高度是3.5cm,那么小视力表中相应“E”的高度是()A3cm B2.5cm C2.3cm D2.1cm4、如图,在ABC与ADE中,BAC=D,要使ABC与ADE相似,还需满足下列条件中的()A= B= C= D=5、2015年6月27日,四川共青图雨城区委在中里镇文

13、化馆举办了第二期青年剪纸培训,参加培训的小王想把一块RtABC废纸片剪去一块矩形BDEF纸片,如图所示,若C=30,AB=10cm,则该矩形BDEF的面积最大为()A4cm3 B5cm3 C10cm3 D25cm36、兴趣小组的同学要测量树的高度在阳光下,一名同学测得一根长为l米的竹竿的影长为0.5米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为()A9.5米 B10.75米 C11.8米 D9.8米7、如图,在ABC中,AB=8cm,BC=16cm

14、,动点P从点A开始沿AB边运动,速度为2cm/s;动点Q从点B开始沿BC边运动,速度为4cm/s;如果P、Q两动点同时运动,那么何时QBP与ABC相似?8、如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,求树高AB9、已知:如图,在RtABC中,C=90,BD平分ABC,交AC于点D,经过B、D两点的O交AB 于点E,交BC于点F,EB为O的直径(1)求证:AC是O的切线;(2)当BC=2,cosABC=时,求

15、O的半径直击中考1、【2011深圳】如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中ABC相似的是( ) A B C D2、【2006深圳】如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于( )A4.5米 B6米 C7.2米 D8米3、【2011深圳】如图,ABC与DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为( )A:1 B:1 C5:3 D不确定4、【2016深圳】如图,CB=CA,ACB=90,点D在边BC上(与B、C不重合),四边形A

16、DEF为正方形,过点F作FGCA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:AC=FG;SFAB:S四边形CBFG=1:2;ABC=ABF;AD2=FQAC,其中正确的结论的个数是( )A1 B2 C3 D4S(Summary-Embedded)归纳总结重点回顾1、 成比例线段 2、 平行线分线段成比例3、 三角形相似的条件 4、 利用三角形相似测高5、相似三角形的性质与位似 名师点拨 熟练掌握平行线分线段成比例、三角形相似的常见模型,掌握对应的性质,并多加练习和总结,是解决本章内容的关键;对于动点类的题,以不变的数量关系,列方程解决,克服畏难心理是前提;对于中考当中的综合题,三角形相似是求解未知线段长度的一种重要方法。学霸经验 本节课我学到 我需要努力的地方是13