ImageVerifierCode 换一换
格式:DOCX , 页数:14 ,大小:323.25KB ,
资源ID:126600      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-126600.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(九年级下册数学同步课程讲义第06讲-二次函数的应用(提高)-教案)为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

九年级下册数学同步课程讲义第06讲-二次函数的应用(提高)-教案

1、学科教师辅导讲义学员编号: 年 级:九年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第06讲-二次函数的应用 授课类型T同步课堂P实战演练S归纳总结教学目标 掌握二次函数最值的计算; 掌握几何图形面积的最值计算; 熟练运用二次函数解决最大利润问题; 理解二次函数与一元二次方程。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理二、 知识概念1、用二次函数的性质解决最值计算问题(1)将函数表达式配方成顶点式,进行求解:开口向上时顶点处取得最小值;开口向下时取最大值。(2)当自变量X的取值范围遇到限制时,则需要先判断对称轴是否被包含在取值范围中,再

2、根据二次函数的增减性计算出函数的最大值、最小值。2、用二次函数的性质解决实际问题利用二次函数的最值确定最大利润、最节省方案等问题是二次函数应用最常见的问题,解决此类问题的关键是认真审题,理解题意,建立二次函数的数学模型,再用二次函数的相关知识解决一般方法步骤:(1)列出二次函数的解析式,列解析式时,要根据自变量的实际意义,确定自变量的取值范围(2)在自变量取值范围内,运用公式法或配方法或对称轴判定法,求出二次函数的最大值或最小值3、二次函数与一元二次方程的关系(1)二次函数yax2bxc(a0),当y0时,就变成了ax2bxc0(a0)(2)ax2bxc0(a0)的解是抛物线与x轴交点的横坐标

3、(3)当b24ac0时,抛物线与x轴有两个不同的交点;当b24ac0时,抛物线与x轴有一个交点;当b24ac0时,抛物线与x轴没有交点考点一:根据实际问题求二次函数表达式例1、为了美观,在加工太阳镜时将下半部分轮廓制作成抛物线的形状(如图所示),对应的两条抛物线关于y轴对称,AEx轴,AB=4cm,最低点C在x轴上,高CH=1cm,BD=2cm,则右轮廓DFE所在抛物线的解析式为()Ay=(x+3)2 By=(x3)2Cy=(x+3)2 Dy=(x3)2【解析】B例2、某种品牌的服装进价为每件150元,当售价为每件210元时,每天可卖出20件,现需降价处理,且经市场调查:每件服装每降价2元,每

4、天可多卖出1件在确保盈利的前提下,若设每件服装降价x元,每天售出服装的利润为y元,则y与x的函数关系式为()Ay=x2+10x+1200(0x60)By=x210x+1250(0x60)Cy=x2+10x+1250(0x60)Dy=x2+10x+1250(x60)【解析】A考点二:最值计算问题例1、已知二次函数y=x26x+8(1)将y=x26x+8化成y=a(xh)2+k的形式;(2)当0x4时,y的最小值是1,最大值是8;(3)当y0时,写出x的取值范围【解析】(1)y=x26x+8=(x26x+9)9+8=(x3)21; (2)抛物线y=x26x+8开口向上,对称轴为x=3,当0x4时,

5、x=3,y有最小值1;x=0,y有最大值8;(3)y=0时,x26x+8=0,解得x=2或4,当y0时,x的取值范围是2x4故答案为1,8考点三: 几何图形面积的最值问题例1、某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米(1)若苗圃园的面积为72平方米,求x;(2)若平行与墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个苗圃园的面积不小于100平方米时,直接写出x的取值范围【解析】(1)根据题意得:(302x)

6、x=72,解得:x=3,x=12,302x18,x=12;(2)设苗圃园的面积为y,y=x(302x)=2x2+30x,a=20,苗圃园的面积y有最大值,当x=时,即平行于墙的一边长158米,y最大=112.5平方米;6x11,当x=11时,y最小=88平方米;(3)由题意得:2x2+30x100,302x18解得:6x10例2、如图,已知抛物线y=ax2+x+c经过A(4,0),B(1,0)两点,(1)求该抛物线的解析式;(2)在直线AC上方的该抛物线上是否存在一点D,使得DCA的面积最大?若存在,求出点D的坐标及DCA面积的最大值;若不存在,请说明理由【解析】(1)把A(4,0),B(1,

7、0)代入抛物线的解析式得: 则抛物线解析式为y=x2+x2;(2)存在,理由如下:设D的横坐标为t(0t4),则D点的纵坐标为t2+t2,过D作y轴的平行线交AC于E,连接CD,AD,如图所示,由题意可求得直线AC的解析式为y=x2, E点的坐标为(t,t2),DE=t2+t2(t2)=t2+2t,DAC的面积S=(t2+2t)4=t2+4t=(t2)2+4,当t=2时,S最大=4,此时D(2,1),DAC面积的最大值为4考点四:求最大利润问题例1、某宾馆拥有客房100间,经营中发现:每天入住的客房数y(间)与其价格x(元)(180x300)满足一次函数关系,部分对应值如表:x(元)18026

8、0280300y(间)100605040(1)求y与x之间的函数表达式;(2)已知每间入住的客房,宾馆每日需支出各种费用100元;每日空置的客房需支出各种费用60元,当房价为多少元时,宾馆当日利润最大?求出最大值(宾馆当日利润=当日房费收入当日支出)【解析】(1)设一次函数表达式为y=kx+b(k0),依题意得:,解得:y与x之间的函数表达式为y=x+190(180x300)(2)设房价为x元(180x300)时,宾馆当日利润为w元,依题意得:w=(x+190)(x100)60100(x+190)=+210x13600=(x210)2+8450,当x=210时,w取最大值,最大值为8450答:

9、当房价为210元时,宾馆当日利润最大,最大利润为8450元例2、草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象(1)求y与x的函数解析式(也称关系式);(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值【解析】(1)设y与x的函数关系式为y=kx+b,根据题意,得:,解得:,y与x的函数解析式为y=2x+340,(20x40)(2)由已知得:W=(x20)(2x+340)=2x2+380x68

10、00=2(x95)2+11250,20,当x95时,W随x的增大而增大,20x40,当x=40时,W最大,最大值为2(4095)2+11250=5200元考点五:二次函数与一元二次方程例1、已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=a,x2=b(ab),则二次函数y=x2+mx+n中,当y0时,x的取值范围是()Axa Bxb Caxb Dxa或xb【解析】C例2、若二次函数y=ax2+bx+c(a0)的图象如图所示,且关于x的方程ax2+bx+c=k有两个不相等的实根,则常数k的取值范围是()A0k4 B3k1Ck3或k1 Dk4【解析】由图象可知,抛物线的对称轴为x

11、=1,顶点坐标为(1,4),设抛物线的解析式为:y=a(x+1)2+4,把(1,0)代入解析式得,a=1,解析式为:y=x22x+3,方程=x22x+3=k有两个不相等的实根,=4+124k0,解得:k4故选:DP(Practice-Oriented)实战演练实战演练 课堂狙击1、下列图形中,阴影部分面积为1的是()ABCD【解析】A2、已知抛物线y=x2x1,与x轴的一个交点为(m,0),则代数式m2m+2014的值为()A2013 B2015 C2014 D2010【解析】B3、二次函数y=mx2+x2m(m是非0常数)的图象与x轴的交点个数为()A0个 B1个 C2个 D1个或2个【解析

12、】二次函数y=mx2+x2m(m是非0常数)的图象与x轴的交点个数即为y=0时方程mx2+x2m=0的解的个数,=1+8m20,故图象与x轴的交点个数为2个故选C4、若关于x的一元二次方程(x2)(x3)=m有实数根x1、x2,且x1x2,则下列结论中错误的是()A当m=0时,x1=2,x2=3 BmC当m0时,2x1x23 D二次函数y=(xx1)(xx2)+m的图象与x轴交点的坐标为(2,0)和(3,0)【解析】C5、如图,从某建筑物10m高的窗口A处用水管向外喷水,喷出的水成抛物线状(抛物线所在平面与墙面垂直)如果抛物线的最高点M离墙1m,离地面m,则水流落地点B离墙的距离OB是()A2

13、m B3m C4m D5m【解析】B6、如图已知A1,A2,A3,An是x轴上的点,且OA1=A1A2=A2A3=A3A4=An1An=1,分别过点A1,A2,A3,An作x轴的垂线交二次函数y=x2(x0)的图象于点P1,P2,P3,Pn,若记OA1P1的面积为S1,过点P1作P1B1A2P2于点B1,记P1B1P2的面积为S2,过点P2作P2B2A3P3于点B2,记P2B2P3的面积为S3,依次进行下去,最后记Pn1Bn1Pn(n1)的面积为Sn,则Sn=()A BC D【解析】二次函数y=x2,由图象知:当x=n时,y=n2, 当x=n1时,y=(n1)2,Sn=1n2(n1)2,=故选

14、A7、为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的三块矩形区域,而且这三块矩形区域的面积相等设BC的长度为xm,矩形区域ABCD的面积为ym2(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?【解析】三块矩形区域的面积相等,矩形AEFD面积是矩形BCFE面积的2倍,AE=2BE,设BE=FC=a,则AE=HG=DF=2a,DF+FC+HG+AE+EB+EF+BC=80,即8a+2x=80, a=x+10,3a=x+30,y=(x+30)x=x2+30x,a=x+100,x40,则y

15、=x2+30x(0x40);(2)y=x2+30x=(x20)2+300(0x40),且二次项系数为0,当x=20时,y有最大值,最大值为300平方米8、某宾馆有客房50间,当每间客房每天的定价为220元时,客房会全部住满;当每间客房每天的定价增加10元时,就会有一间客房空闲,设每间客房每天的定价增加x元时,客房入住数为y间(1)求y与x的函数关系式(不要求写出x的取值范围);(2)如果每间客房入住后每天的各种支出为40元,不考虑其他因素,则该宾馆每间客房每天的定价为多少时利润最大?【解析】(1)由题意可得,y=50=,即y与x的函数关系式是:y=x+50;(2)当每间客房每天的定价增加x元时

16、,设宾馆的利润为w元,则w=(x+50)(220+x40)=,当x=160时,w有最大值, 故这一天宾馆每间客房的定价为:220+160=380(元),即当宾馆每间客房的定价为380元时,宾馆利润最大 课后反击1、如图,半圆A和半圆B均与y轴相切于O,其直径CD,EF均和x轴垂直,以O为顶点的两条抛物线分别经过点C,E和点D,F,则图中阴影部分面积()A B C D条件不足,无法求【解析】B2、如图,点E、F、G、H分别是正方形ABCD边AB、BC、CD、DA上的点,且AE=BF=CG=DH设A、E两点间的距离为x,四边形EFGH的面积为y,则y与x的函数图象可能为()A B C D【解析】设

17、正方形的边长为m,则m0,AE=x,DH=x,AH=mx,EH2=AE2+AH2,y=x2+(mx)2,y=x2+x22mx+m2,y=2x22mx+m2,=2(xm)2+,=2(xm)2+m2,y与x的函数图象是A故选A3、若函数y=mx2(m3)x4的图象与x轴只有一个交点,则m的值为()A0 B1或9 C1或9 D0或1或9【解析】当m=0,则函数y=mx2(m3)x4是一次函数关系,故图象一定x轴有一个交点,当m0,y=mx2(m3)x4的图象与x轴只有一个交点,b24ac=(m3)24m(4)=0,解得:m1=1,m2=,9,综上所述:m=0或1或9故选:D4、如图,点A1、A2、A

18、3、An在抛物线y=x2图象上,点B0、B1、B2、B3、Bn在y轴上(点B0与坐标原点O重合),若A1B0B1、A2B1B2、AnBn1Bn都为等腰直角三角形,则A2011B2010的长为()A2010 B2011 C D【解析】作A1Cy轴,A2Ey轴,A1Dx轴,A2Fx轴,垂足分别为C、E、D、F,A1B0B1、A2B1B2都是等腰直角三角形,B1C=B0C=DB0=A1D,B2E=B1E,设A1(a,b),a=b,将其代入解析式y=x2得:a=a2,解得:a=0(不符合题意)或a=1,由勾股定理得:A1B0=,同理可以求得:A2B1=2,A3B2=3,A4B3=4,A2011B201

19、0=2011故选D5、为备战2016年里约奥运会,中国女排的姑娘们刻苦训练,为国争光,如图,已知排球场的长度OD为18米,位于球场中线处球网的高度AB为2.43米,一队员站在点O处发球,排球从点O的正上方1.8米的C点向正前方飞出,当排球运行至离点O的水平距离OE为7米时,到达最高点G建立如图所示的平面直角坐标系(1)当球上升的最大高度为3.2米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)的函数关系式(不要求写自变量x的取值范围)(2)在(1)的条件下,对方距球网0.5米的点F处有一队员,他起跳后的最大高度为3.1米,问这次她是否可以拦网成功?请通过计算说明(3)若队员发球既要过

20、球网,又不出边界,问排球飞行的最大高度h的取值范围是多少?(排球压线属于没出界)【解析】(1)根据题意知此时抛物线的顶点G的坐标为(7,3.2),设抛物线解析式为y=a(x7)2+3.2,将点C(0,1.8)代入,得49a+3.2=1.8,解得:a=,排球飞行的高度y与水平距离x的函数关系式为y=(x7)2+;(2)由题意当x=9.5时,y=(9.57)2+3.023.1,故这次她可以拦网成功;(3)设抛物线解析式为y=a(x7)2+h,将点C(0,1.8)代入,得:49a+h=1.8,即a=,此时抛物线解析式为y=(x7)2+h,根据题意,得:,解得:h3.025,答:排球飞行的最大高度h的

21、取值范围是h3.0256、某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本(1)请直接写出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?【解析】(1)设y=kx+b,把(22,36

22、)与(24,32)代入得:,解得:,则y=2x+80;(2)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x元,根据题意得:(x20)y=150,则(x20)(2x+80)=150,整理得:x260x+875=0,(x25)(x35)=0,解得:x1=25,x2=35(不合题意舍去)答:每本纪念册的销售单价是25元;(3)由题意可得:w=(x20)(2x+80)=2x2+120x1600=2(x30)2+200,此时当x=30时,w最大,又售价不低于20元且不高于28元,x30时,y随x的增大而增大,即当x=28时,w最大=2(2830)2+200=192(元),答:

23、该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元直击中考1、【2016鄂州】如图,二次函数y=ax2+bx+c=0(a0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC,则下列结论:abc0; 9a+3b+c0;c1; 关于x的方程ax2+bx+c=0(a0)有一个根为其中正确的结论个数有()A1个 B2个 C3个 D4个【解析】由图象开口向下,可知a0,与y轴的交点在x轴的下方,可知c0,又对称轴方程为x=2,所以0,所以b0,abc0,故正确;由图象可知当x=3时,y0,9a+3b+c0,故错误;由图象可知OA1

24、,OA=OC,OC1,即c1,c1,故正确;假设方程的一个根为x=,把x=代入方程可得+c=0,整理可得acb+1=0,两边同时乘c可得ac2bc+c=0,即方程有一个根为x=c,由可知c=OA,而当x=OA是方程的根,x=c是方程的根,即假设成立,故正确;综上可知正确的结论有三个,故选C2、【2010深圳】儿童商场购进一批M型服装,销售时标价为75元/件,按8折销售仍可获利50%商场现决定对M型服装开展促销活动,每件在8折的基础上再降价x元销售,已知每天销售数量y(件)与降价x(元)之间的函数关系式为y=20+4x(x0)(1)求M型服装的进价;(2)求促销期间每天销售M型服装所获得的利润W

25、的最大值【解析】(1)设进价为z,销售时标价为75元/件,按8折销售仍可获利50%则750.8=(1+0.5)z z=40; 答:M型服装的进价为40元;(2)销售时标价为75元/件,开展促销活动每件在8折的基础上再降价x元销售,M型服装开展促销活动的实际销价为750.8x=60x,销售利润为60x40=20x而每天销售数量y(件)与降价x(元)之间的函数关系式为y=20+4x,促销期间每天销售M型服装所获得的利润:W=(20x)(20+4x)=4x2+60x+400=4+625当x=7.5(元)时,利润W最大值为625元3、【2016安徽】如图,二次函数y=ax2+bx的图象经过点A(2,4

26、)与B(6,0)(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2x6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值【解析】(1)将A(2,4)与B(6,0)代入y=ax2+bx,得,解得:;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接 CD,过C作CEAD,CFx轴,垂足分别为EF,SOAD=ODAD=24=4;SACD=ADCE=4(x2)=2x4;SBCD=BDCF=4(x2+3x)=x2+6x,则S=SOAD+SACD+SBCD=4+2x4x2+6x=x2+8x,S关于x的函数表达式为S=x2+8x(2x6),S=x2+8x=(x4)2+16,当x=4时,四边形OACB的面积S有最大值,最大值为16S(Summary-Embedded)归纳总结重点回顾1、 二次函数最值的计算2、 几何类二次函数最值的计算3、 应用二次函数解决最大利润问题名师点拨根据实际问题,建立二次函数模型,准确列出函数表达式,并计算出对应的最值是解决本节问题的关键。 学霸经验 本节课我学到 我需要努力的地方是14