ImageVerifierCode 换一换
格式:DOCX , 页数:11 ,大小:309.33KB ,
资源ID:126573      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-126573.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(九年级下册数学同步课程讲义第02讲-三角函数的应用(提高)-学案)为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

九年级下册数学同步课程讲义第02讲-三角函数的应用(提高)-学案

1、学科教师辅导讲义学员编号:年级:九年级(下)课时数:3学员姓名:辅导科目:数学学科教师:授课主题第02讲-三角函数的应用授课类型T同步课堂P实战演练S归纳总结教学目标 在实际问题中熟练建立解三角形模型; 利用三角函数计算模型中的相关长度; 在常见问题中,能熟练做出辅助线构建模型。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理二、 知识概念1、相关概念仰角:视线在水平线上方的角叫仰角俯角:视线在水平线下方的角叫俯角坡度:坡面的铅直高度和水平宽度的比叫做坡度(或叫坡比),用字母i表示坡角:坡面与水平面的夹角叫坡角,用表示,则有i_tan 如图所示,即坡度是坡角的正切

2、值方向角:平面上,通过观察点O作一条水平线(向右为东向)和一条铅垂线(向上为北向),则从O点出发的视线与水平线或铅锤线所夹的角,叫做观测的方向角2、利用(三角函数)解直角三角形解实际应用题的一般步骤:弄清题中名词术语的意义(如俯角、仰角、坡角、方向角等),然后根据题意画出几何图形,建立数学模型;将实际问题中的数量关系归结为直角三角形中元素之间的关系,当有些图形不是直角三角形时,可添加适当的辅助线,把它们分割成直角三角形;寻求基础直角三角形,并解这个三角形或设未知数进行求解考点一:解决坡度、坡角实际问题例1、河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为() A12米

3、B4米 C5米 D6米例2、如图,斜面AC的坡度(CD与AD的比)为1:2,AC=3米,坡顶有旗杆BC,旗杆顶端B点与A点有一条彩带相连若AB=10米,则旗杆BC的高度为() A5米 B6米 C8米 D(3+)米考点二:方位角问题例1、如图,一艘海轮位于灯塔P的北偏东30方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45方向上的B处,这时,海轮所在的B处与灯塔P的距离为()A40海里 B40海里 C80海里 D40海里例2、如图,一渔船由西往东航行,在A点测得海岛C位于北偏东60的方向,前进40海里到达B点,此时,测得海岛C位于北偏东30的方向,则海岛C到航线

4、AB的距离CD是() A20海里 B40海里 C20海里 D40海里考点三:测量高度例1、如图,热气球的探测器显示,从热气球A处看一栋楼顶部B处的仰角为30,看这栋楼底部C处的俯角为60,热气球A处与楼的水平距离为120m,则这栋楼的高度为()A160m B120m C300m D160m例2、如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60,沿山坡向上走到P处再测得点C的仰角为45,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上求电视塔OC的高度以及此人所在位置点P的铅直高度(测倾器高度忽略不计,结果保留根号式)考点四:测量距离和宽度例1、如

5、图,某日,正在我国南海海域作业的一艘大型渔船突然发生险情,相关部门接到求救信号后,立即调遣一架直升飞机和一艘正在南海巡航的渔政船前往救援,当飞机到达海面3000m的高空C处时,测得A处渔政船的俯角为45,测得B处发生险情渔船的俯角为30,此时渔政船和渔船的距离AB是()A3000m B3000()m C3000()m D1500m例2、如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30,测得大楼顶端A的仰角为45(点B,C,E在同一水平直线上),已AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据:1.

6、414,1.732)P(Practice-Oriented)实战演练实战演练 课堂狙击1、如图,滑雪场有一坡角为20的滑雪道,滑雪道AC的长为200米,则滑雪道的坡顶到坡底垂直高度AB的长为() A200tan20米 B米 C200sin20米 D200cos20米2、如图,水库大坝截面的迎水坡AD的坡比为4:3,背水坡BC的坡比为1:2,大坝高DE=20m,坝顶宽CD=10m,则下底AB的长为()A55m B60m C65m D70m3、如图,为了测量某建筑物MN的高度,在平地上A处测得建筑物顶端M的仰角为30,向N点方向前进16m到达B处,在B处测得建筑物顶端M的仰角为45,则建筑物MN的

7、高度等于()A8()m B8()mC16()m D16()m4、如图,已知灯塔M方圆一定范围内有镭射辅助信号,一艘轮船在海上从南向北方向以一定的速度匀速航行,轮船在A处测得灯塔M在北偏东30方向,行驶1小时后到达B处,此时刚好进入灯塔M的镭射信号区,测得灯塔M在北偏东45方向,则轮船通过灯塔M的镭射信号区的时间为()A(1)小时 B(+1)小时C2小时 D小时 5、如图,将宽为1cm的纸条沿BC折叠,使CAB=45,则折叠后重叠部分的面积为() Acm2 Bcm2 Ccm 2 Dcm26、如图,从热气球C处测得地面A、B两点的俯角分别是30、45,如果此时热气球C处的高度CD为100米,点A、

8、D、B在同一直线上,则AB两点的距离是()A200米 B200米C220米 D100()米7、如图,广安市防洪指挥部发现渠江边一处长400米,高8米,背水坡的坡角为45的防洪大堤(横截面为梯形ABCD)急需加固经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽2米,加固后,背水坡EF的坡比i=1:2(1)求加固后坝底增加的宽度AF的长;(2)求完成这项工程需要土石多少立方米?8、如图,一艘渔船位于海洋观测站P的北偏东60方向,渔船在A处与海洋观测站P的距离为60海里,它沿正南方向航行一段时间后,到达位于海洋观测站P的南偏东45方向上的B处求此时渔船所在的B处与海

9、洋观测站P的距离(结果保留根号) 课后反击1、如图,将一个RtABC形状的楔子从木桩的底端点P处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为18,若楔子沿水平方向前移6cm(如箭头所示),则木桩上升了()A6tan18cm Bcm C6sin18cm D6cos18cm2、济南大明湖畔的“超然楼”被称作“江北第一楼”,某校数学社团的同学对超然楼的高度进行了测量,如图,他们在A处仰望塔顶,测得仰角为30,再往楼的方向前进60m至B处,测得仰角为60,若学生的身高忽略不计,1.7,结果精确到1m,则该楼的高度CD为()A47m B51m C53m D54m3、如图,某课外活动小组

10、在测量旗杆高度的活动中,已测得仰角CAE=33,AB=a,BD=b,则下列求旗杆CD长的正确式子是()ACD=b sin33+a BCD=b cos33+aCCD=b tan33+a DCD=4、如图,轮船沿正南方向以30海里/时的速度匀速航行,在M处观测到灯塔P在西偏南68方向上,航行2小时后到达N处,观测灯塔P在西偏南46方向上,若该船继续向南航行至离灯塔最近位置,则此时轮船离灯塔的距离约为(由科学计算器得到sin68=0.9272,sin46=0.7193,sin22=0.3746,sin44=0.6947)() A22.48 B41.68 C43.16 D55.635、如图,在一笔直的

11、海岸线l上有A、B两个观测站,AB=2km、从A测得船C在北偏东45的方向,从B测得船C在北偏东22.5的方向,则船C离海岸线l的距离(即CD的长)为() A4km B(2+)km C2km D(4)km6、课外实践活动中,数学老师带领学生测量学校旗杆的高度如图,在A处用测角仪(离地高度为1.5米)测得旗杆顶端的仰角为15,朝旗杆方向前进27米到B处,再次测得旗杆顶端的仰角为30,求旗杆EG的高度7、如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为60,沿山坡向上走到P处再测得该建筑物顶点A的仰角为45已知BC=90米,且B、C、D在同一条直线上,山坡坡度为(即tanPCD=)(1)求该建

12、筑物的高度(即AB的长)(2)求此人所在位置点P的铅直高度(测倾器的高度忽略不计,结果保留根号形式)直击中考1、【2015衡阳】如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A的仰角为30,再向电视塔方向前进100米达到F处,又测得电视塔顶端A的仰角为60,则这个电视塔的高度AB(单位:米)为()A50 B51 C50+1 D1012、【2014深圳】小明去爬山,在山脚看山顶角度为30,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60,求山高()A600250米 B600250米C350+350米 D500米3、【2013深圳】如图,已知l1l

13、2l3,相邻两条平行直线间的距离相等,若等腰直角ABC的三个顶点分别在这三条平行直线上,则sin的值是() A B C D4、【2015甘南州】如图,从热气球C上测得两建筑物A、B底部的俯角分别为30和60度如果这时气球的高度CD为90米且点A、D、B在同一直线上,求建筑物A、B间的距离S(Summary-Embedded)归纳总结重点回顾1、 理解坡度的概念,利用坡度解决实际问题2、 熟练掌握相关方位角、观察角的概念,准确构造直角三角形3、 利用三角函数、解三角形知识解决测高、距离和宽度等实际问题名师点拨1、将实际问题中,当有些图形不是直角三角形时,可添加适当的辅助线,把它们分割成直角三角形;2、寻求基础直角三角形,并解这个三角形或设未知数进行求解是解决问题的关键学霸经验 本节课我学到 我需要努力的地方是11