ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:248.50KB ,
资源ID:126318      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-126318.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(七年级下册数学讲义第02讲-幂的乘方与积的乘方(培优)-教案)为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

七年级下册数学讲义第02讲-幂的乘方与积的乘方(培优)-教案

1、 学科教师辅导讲义学员编号: 年 级:七年级 课 时 数:3学员姓名:辅导科目:数学学科教师:授课主题 第02讲-幂的乘方与积的乘方授课类型T同步课堂P实战演练S归纳总结教学目标 进一步体会幂运算的意义及类比、归纳方法; 了解幂的乘方与积的乘方的运算性质,并能解决一些实际问题。授课日期及时段T(Textbook-Based)同步课堂体系搭建 一、知识框架 二、知识概念 (一)幂的乘方 1、幂的乘方的意义:幂的乘方指的是几个相同的幂相乘,如是3个相乘,读作a的五次幂的三次方,是n个相乘,读作a的m次幂的n次方。 2、幂的乘方的运算性质:都是正整数),就是说,幂的乘方,底数不变,指数相乘。幂的乘方

2、的运算性质可推广为都是正整数)3、幂的乘方的运算性质的逆用:都是正整数)(二)积的乘方1、积的乘方的意义:积的乘方指底数是乘积形式的乘方,如等 2、积的乘方的运算性质:是正整数),就是说,积的乘方等于把积中的每一个因式分别乘方,再把所得的幂相乘。积的乘方的运算性质可推广为是正整数)3、积的乘方的运算性质的逆用:是正整数)典例分析 考点一:幂的乘方运算例1、下列运算正确的是()Aa2a3=a6 B(a3)2 =a6 C(ab)2=ab2 D2a3a=2a2 【解析】D例2、下列等式错误的是()A(2mn)2=4m2n2 B(2mn)2=4m2n2C(2m2n2)3=8m6n6 D(2m2n2)3

3、=8m5n5 【解析】D例3、(1)已知ax=5,ax+y=25,求ax+ay的值;(2)已知10=5,10=6,求102+2的值(3)已知32m+1+32m=324,求m的值【解析】解:(1)ax+y=axay=25,ax=5ay=5,ax+ay=5+5=10(2)102+2=(10)2(10)2=5262=900(3)解:32m+1+32m=32432m(3+1)=32432m=812m=4,即m=2例4、已知a2n=3,求(a3n)2(a2)的值【解析】原式=(a2n)3(a2n)2=3332=279=243例5、计算(1) (2)a6a5a+5(a3)43(a3)3a2a(3)(0.1

4、25)201426042 (4)()5024(2)2009 【解析】(1)原式=1 (2)原式= (3)原式= a12 (4)原式= 考点二:比较幂的大小例1、比较3555,4444,5333的大小【解析】比较幂的大小,一般思路是转化为指数或底数相同的数进行比较。解:3555=35111=(35)111=2431114444=44111=(44)111=2561115333=53111=(53)111=125111又256243125256111243111125111即444435555333例2、已知a、b、c都是正整数,且a2=2,b4=3,c6=5,试比较a、b、c的大小【解析】解:a

5、2=2a4=4b4=3abb12=(b4)3=27,c12=(c6)2=25bcabc例3、已知p=,q=,试比较p,q的大小【解析】解:p=,q= pq=1 p=1例4、你能比较两个数20102011和20112010的大小吗?为了解决这个问题,先把问题一般化,即比较nn+1和(n+1)n的大小(n1且n为整数):然后从分析n=1,n=2,n=3这些简单的情形入手,从中发现规律,经过归纳、总结,最后猜想出结论(1)通过计算,比较下列各组数的大小(在横线处填上“”、“=”或“”):1221;2332;3443;4554;5665;6776;7887(2)由第(1)小题的结果归纳、猜想nn+1与

6、(n+1)n的大小关系(3)根据第(2)小题得到的一般结论,可以得到2010201120112010(填“”、“=”或“”)【解析】(1)1221;2332;3443;4554;566 56776;7887;故答案为:,;(2)由(1)可知,当n=1、2时,nn+1(n+1)n;当n3时,nn+1(n+1)n;(3)20103,201132010201120112010考点三:积的乘方例1、若A为一数,且A=2576114,则下列选项中所表示的数,何者是A的因子?()A245 B77113 C2474114 D2676116【解析】C例2、已知3x+25x+2=153x4,求(x1)23x(x

7、2)4的值【解析】解:3x+25x+2=(15)x+2=153x4x+2=3x4,解得:x=3,代入(x1)23x(x2)4得原式=9例3、计算:(1) (2)(3)82015(0.125)2016+(0.25)326 (4)(7)2010()2011(1)2009【解析】(1)原式= (2)原式=25 (3)原式=0.875 (4)原式=例4、运用积的乘方法则进行计算:(1) (2)(2x4)4+2x10(2x2)32x4(x4)3(3)(ab)n(ba)n2 (4) (a2bn)3(an1b2)35 【解析】(1)原式= (2)原式=2x16 (3)原式=(ab)3n (4)原式=a15n

8、+15b15n+30例5、设x为正整数,且满足3x+12x3x2x+1=216,求(xx1)2的值【解析】解:3x+12x3x2x+1=216,36x26x=216,6x=216,解得x=3,(xx1)2=(331)2=92=81答:(xx1)2的值是81例6、已知n为正整数,且(xn)2 =9,求3(x2)2n的值【解析】所求的式子可以化成(x2n)33(x2n)2,然后把已知的式子代入求值即可解:(xn)2 =9x2n=9原式=(x2n)33(x2n)2=93392=162P(Practice-Oriented)实战演练实战演练 课堂狙击1、计算(x3y)2的结果是() Ax5y Bx6y

9、 Cx3y2 Dx6y2【解析】D2、计算()3()4()5之值与下列何者相同?()A B C D【解析】B3、已知x=240,y=332,z=424,试比较x,y,z的大小【解析】解:x=240=(25)8=328,y=332=(34)8=818,z=424=(43)8=648816432818648328yzx4、已知5b=2a=10,求与的和【解析】解:2a=10,(2a)b=10b,2ab=10b ;5b=10,(5b)a=10a,5ab=10a ,得2ab5ab=(25)ab=10ab2ab5ab=10a10b=10a+bab=a+b两边都除以ab,得=1即+=1 5、计算:(1)

10、(2)(n是正整数)(3) (4)(8)100()99【解析】(1)原式= (2)原式=0 (3)原式= (4)原式=6、(1)若x3n=2,求2x2nx4n+x4nx5n的值(2)若x2a=3,y3b=2,求x4a+y6b的值【解析】(1)x3n=2 2x2nx4n+x4nx5n =2x6n+x9n =2(x3n)2+(x3n)3 =222+23=16(2)x2a=3,y3b=2x4a+y6b=(x2a)2+(y3b)2=32+22=137、比较:2255,3344,5533,6622的大小【解析】解:2255=(225)11,3344=(334)11,5533=(553)11,6622=(

11、662)112253345536622255334455336622 8、计算:(1)(2014)n(n位正整数) (2)()90()90()90【解析】(1)原式=(2014)n=(2)原式=19、5232n+12n3n6n+2能被13整除吗?【解析】解:5232n+12n3n6n+2能被13整除理由如下:5232n+12n3n6n+2=52(32n3)2n3n(6n62)=7532n2n363n6n=7518n3618n=3918n=13318n,又318n是整数,5232n+12n3n6n+2能被13整除10、已知5m=a,25n=b,求:53m+6n的值 (用a,b表示)【解析】由题意

12、可知:25n=(52)n52n=b原式=53m56n=(5m)3(52n)3=a3b3 课后反击1、在一次数学兴趣小组活动中,同学们做了一个找朋友的游戏:A、B、C、D、E五位同学分别持五张纸牌,纸牌上分别写有五个算式:66,63+63,(63)3,(262)(363),(2332)3,如图游戏规定:所持算式的值相等的两个人是朋友同学A的朋友可以是谁呢?说说你的看法【解析】解:A:66B:63+63=263C:(63)3=69D:(262)(363)=665=66E:(2332)3=2936=2366同学A的朋友可以是D2、若am=an(a0且a1,m、n是正整数),则m=n,利用上面结论解决

13、问题; 若28216x=222,求x的值 若(27x)2=36,求x的值【解析】解:(1)28x16x=223x24x=27x+17x+1=22解得x=3(2)(27x)2=(33x)2=36x6x=6解得x=13、已知2a27b37c=1998,其中a,b,c为整数,求(abc)1998的值【解析】解:2a33b37c=23337a=1,b=1,c=1原式=(111)1998=14、计算:(1)()2004(2)2005 (2)(1)99(1239899100)99 (3) (4)【解析】(1)原式=2 (2)原式=10099 (3)原式= -2 (4)原式=45、若169m=a,437n=

14、,且规定20=1,求(36m+74n1)2014的值【解析】解:169m=a,437n=,169m437n=418m437m=236m274n=236m+74n=a=136m+74n=0,原式=(1)2014=16、阅读下列材料:若a3=2,b5=3,则a,b的大小关系是ab(填“”或“”)解:因为a15=(a3)5=25=32,b15=(b5)3=33=27,3227,所以a15b15,所以ab解答下列问题:(1)上述求解过程中,逆用了哪一条幂的运算性质A同底数幂的乘法 B同底数幂的除法 C幂的乘方 D积的乘方(2)已知x7=2,y9=3,试比较x与y的大小【解析】解:a15=(a3)5=2

15、5=32,b15=(b5)3=33=27,3227,所以a15b15所以ab,故答案为:(1)上述求解过程中,逆用了幂的乘方,故选C(2) x63=(x7)9=29=512,y63=(y9)7=37=2187,2187512x63y63,xy7、已知x5m=10,求代数式(2x5m)5(x4)5m+10的值【解析】解:x5m=10(2x5m)5(x4)5m+10=(210)5(x5m)4+10=3.2106104+10=3.210610+10=3.21068、计算:(1)(3)2006()2007(2)【解析】(1)(3)2006()2007=(3)2006)()2006()=(3)()200

16、6()=(2)设1+=m,1+=n,则原式=(m1)nm(n1)=mn=直击中考 1、【2016青岛】计算aa5(2a3)2的结果为() Aa62a5 Ba6 Ca64a5 D3a6【解析】D2、下列运算正确的是() A(a2)5=a7 Ba2a4=a6 C3a2b3ab2=0 D()2=【解析】B3、【2013广州】计算:(m3n)2的结果是() Am6n Bm6n2 Cm5n2 Dm3n2 【解析】BS(Summary-Embedded)归纳总结重点回顾 1、幂的乘方的意义:幂的乘方指的是几个相同的幂相乘,如是3个相乘,读作a的五次幂的三次方,是n个相乘,读作a的m次幂的n次方。 2、幂的乘方的运算性质:都是正整数),就是说,幂的乘方,底数不变,指数相乘。幂的乘方的运算性质可推广为都是正整数)3、幂的乘方的运算性质的逆用:都是正整数)名师点拨 1、积的乘方的意义:积的乘方指底数是乘积形式的乘方,如等 2、积的乘方的运算性质:是正整数),就是说,积的乘方等于把积中的每一个因式分别乘方,再把所得的幂相乘。积的乘方的运算性质可推广为是正整数)3、积的乘方的运算性质的逆用:是正整数)学霸经验 本节课我学到了 我需要努力的地方是 13