ImageVerifierCode 换一换
格式:DOCX , 页数:13 ,大小:981.51KB ,
资源ID:126283      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-126283.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(上海1对3秋季课程讲义-数学-九年级-第5讲-相似三角形性质-学案)为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

上海1对3秋季课程讲义-数学-九年级-第5讲-相似三角形性质-学案

1、精锐教育辅导讲义学员姓名: 学科教师:徐泽文年 级: 初三 辅导科目:数学授课日期主 题第5讲-相似三角形的性质学习目标1 掌握两个相似三角形的周长比、面积比以及对应的角平分线比、对应的中线比、对应的高的比的性质;2 会用相似三角形的性质解决简单的几何问题和实际问题; 3 学会运用相似比的基本性质对应边成比例以及对应角相等;4能够证明相似三角形的各个性质教学内容回顾:(1)相似三角形的定义 如果两个三角形的对应角相等、对应边成比例,那么这两个三角形叫做相似三角形;(2) 已学过的相似三角形的判定定理有几条?它们的具体内容又是怎样?1、由定义可直接得三角形相似的性质:相似三角形的对应角相等,对应

2、边成比例。2、思考:相似三角形可看作是一个三角形放大(或缩小)所得到的,那么三角形中重要的三线高、中线、角平分线是否会随三角形的放大(或缩小)而一起放大(或缩小)即如果相似三角形的相似比为,那么相似三角形的对应高的比、对应中线的比、对应角平分线的比和之间有何关系呢?3猜想:相似三角形的对应高的比、对应中线的比、对应角平分线的比都等于相似比k如图,ABC,相似比为k,ADBC于D,于,你能发现图中还有其他的相似三角形吗?等于什么? 相似三角形的性质定理1:相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.练习1:判断下列结论是否正确:相似三角形的中线比等于相似比;两个相似三角形的

3、高的比等于它们边长的比填空题:已知的相似比为,则它们对应中线的比为;已知两个相似三角形对应高的比是,则它们的对应角平分线的比是;已知,、分别是和的角平分线,且,则 且 , ,边上的中线为 ,求边上的中线 2、思考:相似三角形的周长比和面积比与相似比之间有怎样的关系?已知:图1中(1)、(2)、(3)分别是边长为1、2、3的等边三角形,它们都相似求:(2)与(1)的相似比_ ,(2)与(1)的周长比_; (2)与(1)的面积比_; (3)与(1)的周长比_; (3)与(1)的面积比_. (3)与(1)的相似比_; 3猜想:相似三角形的周长比等于_;相似三角形的面积比等于_.4证明猜想:已知:如图

4、,ABCA1B1C1,且相似比是k.顶点A、B、C分别与A1、B1、C1对应.求证:.于是得到相似三角形的性质定理2:相似三角形周长比等于相似比.性质1和2可以概括为:相似三角形对应高的比、对应中线的比、对应角平分线的比、周长比都等于相似比.由性质1可以猜想相似三角形的面积比等于相似比平方证明猜想如下:已知:如图,ABCA1B1C1,且相似比是k.顶点A、B、C分别与A1、B1、C1对应.求证:.相似三角形的性质定理3:相似三角形的面积比等于相似比的平方.引导学生用几何语言表示出相似三角形性质定理.几何语言:, 练习2:1.两个相似三角形的相似比为1:4,则对应边的高的比为_,对应角的平分线的

5、比为_,周长的比为_,面积的比为_.2.已知ABCABC,对应边的中线之比为,ABC的周长为24cm,面积为18c,则=_,ABC的周长等于_cm,ABC的面积为_c.3如图,ABC中,DE/BC,且AD:BD=4:3,则DE:BC=_,=_.(第3题图)4ABCABC,相似比为3:4,且两个三角形的面积之差为28cm2,则ABC的面积为_cm2, ABC的面积为_cm2.5.如图,梯形ABCD中,AD/BC,AC/BD交于点O,SAOD=4,SBOC=9,则=_,SAOB_,S梯形ABCD_.例题1、已知:如图,在ABC中,BDAC于点D,CEAB于点E,EC和BD相交于点O,联接DE(1)

6、求证:EODBOC; (2)若SEOD16,SBOC36,求的值试一试:在中,是的中点,且,与相交于点,与相交于点(1)求证:;(2)若,求的面积例题2:如图,已知:在与中,交于,且,交于,。求和试一试:如图,点M是ABC内一点,过点M分别作直线平行于ABC的各边,所形成的三个小三角形1、2、3(图中阴影部分)的面积分别是1,4和16则ABC的面积是 例题3:已知,如图的面积为,其中,四边形为矩形,其中在边上,在上,求矩形的面积试一试:如图,已知的边长15厘米,高为10厘米,长方形内接于,点、在边上,点、分别在、上.(1)设,长方形的面积为,试求关于的函数解析式,并写出定义域;(2)若长方形的

7、面积为36,试求这时的值. 例题4已知:如图,平行四边形 ABCD中,(1)求与的周长的比; (2)如果,求试一试:在中,是边上一动点(不与端点、重合),过动点的直线与射线相交于点,与射线相交于点(1)设,点在边上,与相似,求此时的长度;(2)如果点在边上,以点、为顶点的三角形与以点、为顶点的三角形相似,设,求与之间的函数关系式并写出函数的定义域;(3)设,以点、为顶点的三角形与以点、为顶点的三角形相似,求的值 1如果两个相似三角形的对应边的比是4:5,面积的和为41,那么这两个三角形的面积分别为_ 2竿高1.5米,影长1米,同一时刻,某塔影长20米,则塔高是 米3平行四边形ABCD中,E为B

8、A延长线上的一点,CE交AD于F点,若AEAB=13,则SABCFSCDF= 4如图,在中,点分别在上,如果,的面积为4,四边形的面积为5,那么的长为 5如图,在中,动点(与点,不重合)在边上,交于点(1)当的面积与四边形的面积相等时,求的长(2)当的周长与四边形的周长相等时,求的长6如图,在ABC中,矩形DEFG的一边DE在BC上,点G、F分别在AB、AC上,AH是BC边上的高,AH与GF相交于K,已知SAGFSABC964,EF10,求AH的长7如图,小明用直角三角形工具测量树的高度测量时,他使斜边保持水平,并使与点在同一直线上已知两条直角边,测得边离地面的高度,则树高 ABCQDP(第1

9、3题图)8如图,已知在中,是边上的一点,=,的平分线与、分别相交于点和点,那么的值等于 9已知中, =72,平分交于,过作交于,作平分、交于,过作交于,则线段的长度为 (用含有的代数式表示我的总结重在让学生进行总结与回顾,老师适当引导。1、 填空题1、已知两个相似三角形的相似比为3,则它们的周长比为 ;2、若ABCABC,且,ABC的周长为12cm,则ABC的周长为 ;3、如图1,在ABC中,中线BE、CD相交于点G,则= ;SGED:SGBC= ;ABCDF图5GEABCMN图3ABCDE图2ABCDEG图1ABCDE图44、如图2,在ABC中, B=AED,AB=5,AD=3,CE=6,则

10、AE= ;5、如图3,ABC中,M是AB的中点,N在BC上,BC=2AB,BMN=C,则 ,相似比为 ,= ;6、如图4,在梯形ABCD中,ADBC,SADE:SBCE=4:9,则SABD:SABC= ;7、两个相似三角形的周长分别为5cm和16cm,则它们的对应角的平分线的比为 ;8、如图5,在ABC中,BC=12cm,点D、F是AB的三等分点,点E、G是AC的三等分点,则DE+FG+BC= ;9、两个三角形的面积之比为2:3,则它们对应角的比为 ,对应边的高的比为 ;10、已知有两个三角形相似,一个边长分别为2、3、4,另一个边长分别为x、y、12,则x、y的值分别为 ;二、选择题11、下

11、列多边形一定相似的为( ) A、两个矩形 B、两个菱形 C、两个正方形 D、两个平行四边形12、在ABC中,BC=15cm,CA=45cm,AB=63cm,另一个和它相似的三角形的最短边是5cm,则最长边是( ) A、18cm B、21cm C、24cm D、19.5cmAEBCDO13、如图,在ABC中,高BD、CE交于点O,下列结论错误的是( ) A、COCE=CDCA B、OEOC=ODOBC、ADAC=AEAB D、CODO=BOEO14、已知,在ABC中,ACB=900,CDAB于D,若BC=5,CD=3,则AD的长为( )APBCDQR A、2.25 B、2.5 C、2.75 D、

12、315、如图,正方形ABCD的边BC在等腰直角三角形PQR的底边QR上,其余两个顶点A、D在PQ、PR上,则PA:PQ等于( ) A、1: B、1:2 C、1:3 D、2:3ABCDE16、如图,D、E分别是ABC的边AB、AC上的点, =3,且AED=B,则AED与ABC的面积比是( ) A、1:2 B、1:3 C、1:4 D、4:9CABDE三、解答题17、如图,已知在ABC中,CD=CE,A=ECB,试说明CD2=ADBE。ABCDE18、已知,如图, 在ABC中,DEBC,AD=5,BD=3,求SADE:SABC的值。19、已知正方形ABCD,过C的直线分别交AD、AB的延长线于点E、F,且AE=15,AF=10,求正方形ABCD的边长。CABDE20、已知,如图,在等边CDE中,A、B分别是ED、DE的延长在线的点,且DE2=ADEB,求ACB的度数。21、已知,如图,在ABC中,C=600,ADBC于D,BEAC于E,试说明CDECBA。ABCDE22、已知,如图,F为 ABCD边DC延长在线一点,连结AF,交BC于G,交BD于E,试说明AE2=EGEFABCFGED向量的加法和减法的运算方法是什么?怎么表示的?平行四边形法则是怎么表示的?(任取两个向量,作图说明下) 13 / 13