ImageVerifierCode 换一换
格式:DOCX , 页数:14 ,大小:1.02MB ,
资源ID:126267      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-126267.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(上海1对3秋季课程讲义-数学-九年级-第17讲-圆的相关概念与垂径定理-教案)为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

上海1对3秋季课程讲义-数学-九年级-第17讲-圆的相关概念与垂径定理-教案

1、精锐教育辅导讲义学员姓名: 学科教师:年级: 辅导科目:授课日期时间主题圆基本概念与垂径定理学习目标1、掌握圆的相关基本概念2、运用垂径定理解决问题教学内容1、 圆是如何确定的?大小怎么判定?2、 圆中有哪些概念?3、 垂径定理如何应用?【知识梳理1】圆的确定定理 同圆或等圆中半径相等1.点与圆的位置关系圆是到定点(圆心)的距离等于定长(半径)的点的集合。圆的内部是到圆心的距离小于半径的点的集合。圆的外部是到圆心的距离大于半径的点的集合。点与圆心的距离为,则点在直线外;点在直线上;点在直线内。【例题精讲】例1.如图,圆O的半径为15,O到直线l的距离OH=9,P、Q、R为l上的三点.PH=9,

2、QH=12,RH=15,请分别说明点P、Q、R与圆O的位置关系.教法指导:可以通过探究形式让学生能够熟悉掌握点与圆的位置关系,需要特别注意一些题目条件是否是圆内或者圆外。参考答案:所以点P在圆O内,点Q在圆O上,点R在圆O外.【试一试】1.矩形ABCD中,AB8,点P在边AB上,且BP3AP,如果圆P是以点P为圆心,PD为半径的圆,那么下列判断正确的是( )(A) 点B、C均在圆P外; (B) 点B在圆P外、点C在圆P内;(C) 点B在圆P内、点C在圆P外; (D) 点B、C均在圆P内2.如图所示,已知,于点,以为圆心,5为半径作圆C ( ).点在圆内,在圆外 .点在圆内,点在圆上,点在圆外.

3、点、在圆内,在圆外 .点、都在圆外教法指导:建议让学生独立完成,可以设置为相互PK的形式。参考答案:(1)C(2)B2. 过三点的圆1.不在同一直线上的三点确定一个圆。2.经过三角形的三个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,三角形叫做圆的内接三角形。例2.如图,作出所在圆的圆心,并补全整个圆.教法指导:需要重点注意是否在同一条直线上。 参考答案:1.取上任意一点C,联结AB、BC.2.作线段AB的垂直平分线.3.作线段BC的垂直平分线,设与交点为O.4.以O为圆心,OA为半径作圆O.则为所求的圆.【试一试】1. 小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图示,为配到与

4、原来大小一样的圆形玻璃,小明带到商定去的一块玻璃片应该是 ( ).第快 .第快 .第快 .第快2. 三角形的外心一定在该三角形上的三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形教法指导:建议让学生独立完成,可以设置为相互PK的形式。参考答案:(1)B(2)C【知识梳理2】圆心角、弧、弦、弦心距之间的关系1.圆心角:顶点在圆心的角。2.弧:圆上任意两点之间的部分。大于半圆的弧叫优弧,小于半圆的弧叫劣弧,能够重合的弧叫等弧。3.弦:联结圆上任意两点的线段。直径是一条特殊的弦,并且是圆中最大的弦。4.弦心距:从圆心到弦的距离。定理1在同圆或等圆中,相等的圆心角所对的弧相等,所对

5、的弦相等,所对弦的弦心距相等.【例题精讲】例1.已知,如图,ABCD是O的直径,弦AECD,联结CEBC.求证:BC=DE.教法指导:需要重点注意同圆或等圆。参考答案:联结OE.OA=OEOAE=OEAAECDOAE=BOC, OEA=EOCBOC=EOCBC=CE定理2在同圆或等圆中,如果两个圆心角、两个圆周角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.例2.如图,O是ABC的外接圆,AO平分BAC,AOB=BOC,探究ABC的形状,并说明理由.教法指导:需要重点注意四组条件,搞清楚概念,不要混淆。参考答案:过点O作AB、BC、AC的弦心距OD、OE

6、、OFAOB=BOCOD=OEAO平分BACOD=OFOD=OE=OFAB=BC=AC,即ABC是等边三角形.【巩固练习】1.如图,,OEAB,OFCD,OEF=25,求EOF的度数.2.如图,点P是O外的一点,PB与O相交于点AB,PD与O相交于C、D,AB=CD. 求证:(1)PO平分BPD (2)教法指导:建议让学生独立完成,可以设置为相互PK的形式。参考答案:(1)130(2)略例3.如图,在O中,弦AB的长是半径OA的倍,C为的中点,AB、OC相交于P. 求证:四边形OACB为菱形.教法指导:概念要清楚。 参考答案:C为的中点COA=COB, COABOA=OBCO垂直平分AB弦AB

7、的长是半径OA的倍PAO=30OA=OCOP=CPAB平分CO,即ABCO互相平分四边形OACB是平行四边形又COAB四边形OACB是菱形【巩固练习】1.如图,弦AB和CD相交于圆O内一点P,且OPB=OPD,求证;教法指导:建议让学生独立完成,可以设置为相互PK的形式。参考答案:略【知识梳理3】垂径定理定理 垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧推论1一条直线,如果具有过圆心;垂直于弦;平分弦(非直径);平分弦所对的劣弧;平分弦所对的优弧这五个性质中的任何两个性质这条直线就具有其余的三条性质推论2圆的平行弦所夹的弧相等【例题精讲】例1. ABCDGFO已知中,垂足为D,且,以A

8、D为直径作圆O,交AB边于点G,交AC边于点F,如果点F恰好是的中点(1)求CD的长度;(2)当时,求BG的长度 教法指导:注意垂径定理的使用条件,与勾股定理的综合运用。参考答案:(1) 点是的中点,是半径 , (2)过点作,垂足为 在中, , 在Rt中, 在Rt中, 【试一试】1.如图,已知O的半径为5,弦AB的长等于8,ODAB,垂足为点D,DO的延长线与O相交 于点C,点E在弦AB的延长线上,CE与O相交于点F,cosC=,DAEBCOF求:(1)CD的长(5分);(2)EF的长(7分).教法指导:建议让学生独立完成,可以设置为相互PK的形式。参考答案:(1)CD=8(2)EF=CECF

9、=例2.如图,AB是O的直径,弦CD与AB相交,过点A、B向CD引垂线,垂足分别为E、F. 求证:CE=DF教法指导:注意垂径定理推论的运用。参考答案:过圆心作,垂足为H,则CM=DM , AEOMFB又O是AB的中点M是EF的中点EM=MFCE=DF【试一试】1.如图,CD为O的弦,EF在直径AB上, ECCD,DFCD. 求证:AE=DF教法指导:建议让学生独立完成,可以设置为相互PK的形式。参考答案:略1.下列命题中假命题是( )(A)平分弦的半径垂直于弦;(B)垂直平分弦的直线必经过圆心;(C)垂直于弦的直径平分这条弦所对的弧;(D)平分弧的直径垂直平分这条弧所对的弦【参考答案】A12

10、.如图,是的直径,交于、,为的中点,于点,于点,则下列结论错误的是();【参考答案】3.我们把两个三角形的外心之间的距离叫做外心距如图4,在Rt和Rt中,点在边的延长线上,如果,那么和的外心距是 【参考答案】3ABCDOE4.如图,已知在中,弦垂直于直径,垂足为点,如果,那么 【参考答案】5.点为内一点,过点的最长的弦长为10,最短的弦长为8,那么的长等于 .【参考答案】36.如图,CD为O的直径,以D为圆心,DO长为半径作弧,交O于AB两点,求证:【参考答案】略ABCDEF7.已知:如图,在ABC中,D是边BC上一点,以点D为圆心、CD为半径作半圆,分别与边AC、BC相交于点E和点F如果AB

11、=AC=5,cosB=,AE=1求:(1)线段CD的长度;(2)点A和点F之间的距离【参考答案】解:(1)作DHCE,垂足为点HD为半圆的圆心,AC=5,AE=1, , 在RtCDH中,CH=2, (2)作AMBC,垂足为点M,联结AF, 在RtACM中,CF=5,CM=4,1.下列说法中,结论错误的是( )直径相等的两个圆是等圆; 长度相等的两条弧是等弧;圆中最长的弦是直径; 一条弦把圆分成两条弧,这两条弧可能是等弧2.已知是以坐标原点为圆心,5为半径的圆,点的坐标为,则点与的位置关系为( ) A. 在上; B. 在内; C. 在外; D. 在右上方;3.如图,两个同心圆,大圆的半径为5,小

12、圆的半径为3,若大圆的弦AB与小圆有公共点,则弦AB的取值范围是()A8AB10 B8AB10 C4AB5 D4AB54.如图,的直径垂直弦于,且是半径的中点,则直径的长为 ;5.如图,圆过点,圆心在等腰直角三角形内部,那么圆的半径为 ;6.如图,已知是的直径,点是所在直线上一点,点是上一点,交于点,求的长; 7.如图,在中,于,为上一点,以为圆心,为半径的圆交于,交于、,且;(1)求的长;(2)求的值;参考答案:1.B 2.A 3.A 4. 5. 6. (1)证明略;(2); 7. (1);(2);1.如图,点D、E、F、G为两边上的点,且,若DE、FG将的面积三等分,那么下列结论正确的是(

13、)ABCDEFG (A) (B) (C) (D)参考答案:C2.如图,点、位于的两边上,下列条件能判定的是( ) A. B. C. D. 参考答案:C3.已知非零向量、,下列命题中是假命题的是( )A. 如果,那么; B. 如果,那么;C. 如果,那么; D. 如果,那么;参考答案:CB D CAG第16题图E4.如图,已知AD是ABC的中线,G是ABC的重心,联结BG并延长交AC于点E,联结DE.则的值为 参考答案:125.已知在中,那么边的长等于( )A. ; B. ; C. ; D. ;参考答案:B6.抛物线在直线右侧的部分是_.(从“上升的”或“下降的”中选择).参考答案:上升的7.已知抛物线与x轴交于点A、B,顶点C的纵坐标是2,那么a=_参考答案:8.下列说法正确的是()(A) 相切两圆的连心线经过切点 (B) 长度相等的两条弧是等弧(C) 平分弦的直径垂直于弦 (D) 相等的圆心角所对的弦相等参考答案:A9.已知的半径长为3,的半径长(),如果,那么与不可能存在的位置关系是( ) A. 两圆内含; B. 两圆内切; C. 两圆相交; D. 两圆外切;参考答案:D14 / 14