ImageVerifierCode 换一换
格式:DOC , 页数:25 ,大小:1.83MB ,
资源ID:125630      下载积分:60 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-125630.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020年高考数学(理)模拟卷新课标及答案解析(10))为本站会员(Al****81)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2020年高考数学(理)模拟卷新课标及答案解析(10)

1、2020年高考数学(理)模拟卷新课标(10)(本试卷满分150分,考试用时120分钟)注意事项:1答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡的相应位置上。2作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。答案不能答在试卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一

2、并交回。第卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合,则(    )ABCD【答案】A【解析】【分析】求出集合,然后利用交集的定义可求出集合.【详解】,因此,.故选:A.【点睛】本题考查交集的计算,考查计算能力,属于基础题.2设,则ABCD【答案】C【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,然后求解复数的模.详解:,则,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运

3、算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3若向量,若,则AB12CD3【答案】D【解析】【分析】根据题意,由向量平行的坐标表示方法可得若,则有,解可得的值,即可得答案【详解】解:根据题意,向量,若,则有,解得;故选:【点睛】本题考查向量平行的坐标表示公式,关键是掌握向量平行的坐标表示方法,属于基础题4设等差数列的前项和为,若,则等于A18B36C45D60【答案】C【解析】【分析】利用等差数列的通项公式化简已知条件,根据等差数列前项和公式求得的值.【详解】由于数列是等差数列,所以由得,即,而.故选:C.【点睛】

4、本小题主要考查等差数列通项公式及前项和公式的基本量计算,属于基础题.5在的展开式中,各项系数和与二项式系数和之比为,则的系数为(    )A15B45C135D405【答案】C【解析】【分析】令代入可求得各项系数和,根据展开式二项式系数和为,结合两个系数比即可求得的值,进而根据二项展开式的通项求得的系数即可.【详解】令,代入可得各项系数和为展开式的各项的二项式系数和为由题意可知,各项系数的和与各项二项式系数的和之比为64所以解方程可得 则二项式的展开式的通项公式为令解得所以的系数为故选:C【点睛】本题考查了二项式系数和与二项式展开式的系数和的应用,二项展开式通项公式的应用,

5、求指定项的系数,属于基础题.6已知椭圆的左顶点为,上顶点为,右焦点为,若,则椭圆的离心率为(    )ABCD【答案】D【解析】【分析】设椭圆的焦距为,利用向量数量积的坐标运算得出,可得出,等式两边同时除以可得出关于椭圆离心率的二次方程,解出即可.【详解】设椭圆的焦距为,离心率为,则点、,所以,则,即,即,等式两边同时除以得,解得,因此,该椭圆的离心率为.故选:D.【点睛】本题考查椭圆离心率的计算,涉及向量数量积的坐标运算,解题的关键就是要得出关于、的齐次等式,考查运算求解能力,属于中等题.7在满足不等式组的平面内随机取一点,设事件A“”,那么事件A发生的概率是( &nbs

6、p;  )ABCD【答案】B【解析】【分析】结合几何概型的计算方法,求出对应面积之比即为所求概率.【详解】如下图,作出不等式组表示的平面区域(阴影部分),易知,该区域面积为.事件A“”,表示的区域为阴影部分AOC,其面积为.所以事件A发生的概率是.【点睛】本题考查几何概型的概率计算,考查不等式组表示的平面区域,考查数形结合的数学思想的应用,属于基础题.8函数在区间上的图像大致为(     )ABCD【答案】B【解析】【分析】结合选项对和函数分类讨论去绝对值,即可求解.【详解】.故选:B【点睛】本题考查已知函数求图像,化简函数是解题的关键,属于中档题.9九章算术是中

7、国古代数学名著,体现了古代劳动人民数学的智慧,其中第六章“均输”中,有一竹节容量问题,根据这一问题的思想设计了如下所示的程序框图,若输出的的值为35,则输入的的值为(    )A4    B5    C7    D11【答案】A【解析】起始阶段有, ,第一次循环后, , ;第二次循环后, , ;第三次循环后, , ;接着计算,跳出循环,输出.令,得.选A.10一个多面体的直观图和三视图如图所示,点M是AB的中点,一只蝴蝶在几何体ADFBCE内自由飞翔,则它飞入几何体FAMCD内的概率为(    

8、)                 A B C D 【答案】C【解析】【分析】根据三视图求出三棱柱的体积,再求出几何体FAMCD的体积,即可求出概率.【详解】由三视图可知:底面三角形ADF是腰长为a的等腰直角三角形,几何体ADFBCE是侧棱为a的直三棱柱,由题图可知VFAMCDS梯形AMCDDFa3,VADFBCEa3,所以它飞入几何体FAMCD内的概率为.故选:C【点睛】此题考查求几何概型概率,关键在于根据三视图准确求出几何体的体积.11“干支纪年法”是中国历法上自古以来使用的纪年方法,甲、乙、丙、丁、戊、己、庚

9、、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”。“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为:甲子、乙丑、丙寅癸酉,甲戌、乙亥、丙子癸未,甲申、乙酉、丙戌癸巳,共得到60个组合,称六十甲子,周而复始,无穷无尽。2019年是“干支纪年法”中的己亥年,那么2026年是“干支纪年法”中的A甲辰年B乙巳年C丙午年D丁未年【答案】C【解析】【分析】按照题中规则依次从2019年列举到2026年,可得出答案。【详解】根据规则,2019年是己亥年,2020年是庚子年,2021年是辛丑年,2022年是壬寅年,20

10、23年是癸卯年,2024年是甲辰年,2025年是乙巳年,2026年是丙午年,故选:C。【点睛】本题考查合情推理的应用,理解题中“干支纪年法”的定义,并找出相应的规律,是解本题的关键,考查逻辑推理能力,属于中等题。12. 定义在上函数满足,且对任意的不相等的实数有成立,若关于x的不等式在上恒成立,则实数m的取值范围是(   )ABCD【答案】B【解析】【分析】结合题意可知是偶函数,且在单调递减,化简题目所给式子,建立不等式,结合导函数与原函数的单调性关系,构造新函数,计算最值,即可.【详解】结合题意可知为偶函数,且在单调递减,故可以转换为对应于恒成立,即即对恒成立即对恒成立令,则上递增

11、,在上递减,所以令,在上递减所以.故,故选B.【点睛】本道题考查了函数的基本性质和导函数与原函数单调性关系,计算范围,可以转化为函数,结合导函数,计算最值,即可得出答案.第卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分。把答案填在题中的横线上。13已知是第二象限角,且,且_.【答案】【解析】【分析】利用同角三角函数的基本关系求出,然后利用诱导公式可求出的值.【详解】是第二象限角,则,由诱导公式可得.故答案为:.【点睛】本题考查利用同角三角函数的基本关系和诱导公式求值,考查计算能力,属于基础题.14太极图是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种相互转化,相对统一

12、的和谐美,定义:能够将圆的周长和面积同时等分成两个部分的函数称为圆的一个“太极函数”,则下列有关说法中:对于圆的所有非常数函数的太极函数中,都不能为偶函数;函数是圆的一个太极函数;直线所对应的函数一定是圆的太极函数;若函数是圆的太极函数,则所有正确的是_【答案】(2)(3)(4)【解析】【分析】利用新定义逐个判断函数是否满足新定义即可【详解】显然错误,如图 点均为两曲线的对称中心,且能把圆一分为二,故正确直线恒过定点,经过圆的圆心,满足题意,故正确函数为奇函数,则令,得即即对,当时显然无解,即时也无解即时两曲线仅有两个交点,函数能把圆一分为二,且周长和面积均等分若时,函数图象与圆有四个交点,若

13、时,函数图象与圆有六个交点,均不能把圆一分为二综上所述,故正确的是【点睛】本题主要考查了关于圆的新定义,首先是要理解新定义的内容,其次是根据新定义内容结合已经学过的知识来判定正确还是错误,在解答过程中只要能举出一个反例即可判定结果15已知点P(x,y)是抛物线y24x上任意一点,Q是圆(x+2)2+(y4)21上任意一点,则|PQ|+x的最小值为_【答案】3【解析】【分析】利用抛物线的定义得,以及圆上的点的到定点的距离的最小值为圆心到定点的距离减去半径即可转换题目中的条件分析.【详解】画出图像,设焦点为,由抛物线的定义有,故.又当且仅当共线且为与圆的交点时取最小值为 .故的最小值为.又当为线段

14、与抛物线的交点时取最小值,此时【点睛】(1)与抛物线上的点有关的距离之和的最值问题一般转化为抛物线上的点到焦点的距离.(2)与圆上的点有关的距离之和的最值问题一般转化为圆心到定点的距离与半径的关系.16我们称一个数列是“有趣数列”,当且仅当该数列满足以下两个条件:所有的奇数项满足,所有的偶数项满足;任意相邻的两项,满足.根据上面的信息完成下面的问题:(i)数列_“有趣数列”(填“是”或者“不是”);(ii)若,则数列_“有趣数列”(填“是”或者“不是”).【答案】是    是    【解析】【分析】依据定义检验可得正确的结论.【详解】若数列为,则该数列为

15、递增数列,满足“有趣数列”的定义,故为“有趣数列”.若,则,.,故.,故.,故.综上,为“有趣数列”.故答案为:是,是.【点睛】本题以“有趣数列”为载体,考虑数列的单调性,注意根据定义检验即可,本题为中档题.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.第17-21题为必做题,每个考生都必须作答.第22/23题为选考题,考生根据要求作答.(一)必考题:共60分17某市规划一个平面示意图为如下图五边形的一条自行车赛道,为赛道(不考虑宽度),为赛道内的一条服务通道,.(1)求服务通道的长度;(2)当时,赛道的长度?【答案】(1)5 (2) 【解析】【分析】(1

16、)连接,在中,由余弦定理可得,由等腰三角形的性质结合可得,再由勾股定理可得结果;(2)在中,直接利用正弦定理定理可得结果.【详解】(1)连接,在中,由余弦定理得: ,.,又,在中,.(2)在中,.由正弦定理得,即:,得当时,赛道的长度为.【点睛】本题主要考查正弦定理、余弦定理的应用,属于中档题.正弦定理是解三角形的有力工具,其常见用法有以下三种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.18如图,在四棱锥中,侧棱平面,为的中点,.(1)求二面角的余弦值;(2)在

17、线段上是否存在点,使得平面?若存在,求出点的位置,若不存在,说明理由.【答案】(1);(2)存在,的中点.【解析】【分析】(1)作,以为原点,以 的方向分别为轴,轴的正方向,建立如图所示的空间直角坐标系,求出平面的法向量、平面的法向量即可得二面角的的余弦值;(2)线段上存在点,使得平面”等价于垂直面的法向量.【详解】作,以为原点,以 的方向分别为轴,轴的正方向,建立如图所示的空间直角坐标系,则, 则, 设平面的法向量为,由 ,有则可以取设平面的法向量为,由 ,有则可以取所以.由图可知, 二面角的余弦值为(2) 由(1)可知面的法向量为,“线段上存在点,使得平面”等价于,,设, 则 由,得解得.

18、所以线段上存在点,即中点,使得平面.【点睛】本题考查了线面平行的判定,向量法求二面角、动点问题,考查了转化思想,属于中档题19如图,已知抛物线的焦点是,准线是. ()写出焦点的坐标和准线的方程;()已知点,若过点的直线交抛物线于不同的两点、(均与不重合),直线、分别交于点、求证:.【答案】(),准线的方程为;()见解析.【解析】【分析】()根据抛物线的标准方程可得出焦点的坐标和准线的方程;()设直线的方程为,设点、,将直线的方程与抛物线的方程联立,列出韦达定理,求出点、的坐标,计算出,即可证明出.【详解】(I)抛物线的焦点为,准线的方程为:;()设直线的方程为:,令,联立直线的方程与抛物线的方

19、程,消去得,由根与系数的关系得:.直线方程为:,当时,同理得:.,,,.【点睛】本题考查利用抛物线方程求焦点坐标和准线方程,同时也考查了直线与抛物线的综合问题,涉及到两直线垂直的证明,一般转化为两向量数量积为零来处理,考查计算能力,属于中等题.202019年春节期间当红彩视明星翟天临“不知“知网”学术不端事件在全国闹得沸沸扬扬,引发了网友对亚洲最大电影学府北京电影学院、乃至整个中国学术界高等教育乱象的反思为进一步端正学风,打击学术造假行为,教育部日前公布的教育部2019年部门预算中透露,2019年教育部拟抽检博士学位论文约6000篇,预算为800万元国务院学位委员会、教育部2014年印发的博士

20、硕士学位论文抽检办法通知中规定:每篇抽检的学位论文送3位同行专家进行评议,3位专家中有2位以上(含2位)专家评议意见为“不合格”的学位论文将认定为“存在问题学位论文”。有且只有1位专家评议意见为“不合格”的学位论文,将再送2位同行专家进行复评2位复评专家中有1位以上(含1位)专家评议意见为“不合格”的学位论文,将认定为“存在问题学位论文”。设毎篇学位论文被毎位专家评议为“不合格”的槪率均为,且各篇学位论文是否被评议为“不合格”相互独立(1)记一篇抽检的学位论文被认定为“存在问题学位论文”的概率为,求;(2)若拟定每篇抽检论文不需要复评的评审费用为900元,需要复评的评审费用为1500元;除评审

21、费外,其它费用总计为100万元。现以此方案实施,且抽检论文为6000篇,问是否会超过预算?并说明理由【答案】(1) ;(2)不会超过预算,理由见解析【解析】【分析】(1)分别考虑学位论文初评被认定为“存在问题学位论文”、 学位论文复评被认定为“存在问题学位论文”的概率,然后相加求解对应概率;(2)将一篇论文的评审费用用随机变量表示,然后考虑随机变量的均值,注意使用函数思想,最后考虑篇论文的评审费与其他费用之和同万元的大小关系.【详解】(1)因为一篇学位论文初评被认定为“存在问题学位论文”的概率为一篇学位论文复评被认定为“存在问题学位论文”的概率为, 所以一篇学位论文被认定为“存在问题学位论文”

22、的概率为 (2)设每篇学位论文的评审费为X元,则X的可能取值为900,1500,所以 令, 当时,在上单调递增;当时,在上单调递减,所以的最大值为 所以实施此方案,最高费用为(万元)综上,若以此方案实施,不会超过预算【点睛】本题考查相互独立事件的概率、离散型随机变量的均值与函数的综合,难度较难.概率统计题型中,对于计算出的形式较为复杂的用未知量表示的概率或期望,可通过函数单调性或者导数的思想去计算最值.21设函数为常数(1)若函数在上是单调函数,求的取值范围; (2)当时,证明.【答案】(1) ;(2) 证明见解析.【解析】【分析】(1)对函数求导,单调分单调增和单调减,利用或在上恒成立,求得

23、实数的取值范围;(2)利用导数研究函数的单调性,求得结果.【详解】(1)由得导函数,其中.当时,恒成立,故在上是单调递增函数,符合题意; 当时,恒成立,故在上是单调递减函数,符合题意; 当时,由得,则存在,使得.当时,当时,所以在上单调递减,在上单调递增,故在上是不是单调函数,不符合题意.综上,的取值范围是. (2)由(1)知当时,即,故. 令,则,当时,所以在上是单调递减函数,从而,即.【点睛】该题考查的是有关导数的应用,涉及到的知识点有根据函数在给定区间上单调求参数的取值范围,利用导数证明不等式,属于中档题目.(二)选考题:共10分.请考生在22,23题中任选一题作答.如果多做,则按所做的

24、第一题计分.22选修4-4:坐标系与参数方程在直角坐标系中,以坐标原点为极点,轴正半轴为极轴,建立极坐标系,曲线:,曲线:.()求曲线,的直角坐标方程;()已知曲线与轴交于,两点,为曲线上任一点,求的最小值.【答案】():,:;()【解析】【分析】()根据代入可化曲线;将利用两角差的余弦公式展开,代入可化得()求出曲线与轴像交,两点,点关于直线的对称点为,根据即可求解.【详解】()因为,所以曲线的直角坐标方程为,因为,所以曲线的直角坐标方程为.()因为曲线与轴交于,两点,点关于直线的对称点为,所以,所以的最小值为.【点睛】本题考查了极坐标方程与普通方程的互化以及直线与圆的位置关系求距离的最值,

25、需熟记极坐标与普通方程的关系式,属于基础题23选修4-5:不等式选讲已知,证明:(1);(2).【答案】(1) 见解析(2) 见解析【解析】【分析】(1)由柯西不等式即可证明,(2)由a3+b32转化为ab,再由均值不等式可得:ab,即可得到(a+b)32,问题得以证明【详解】证明:(1)由柯西不等式得: 当且仅当ab5ba5,即ab1时取等号;(2)a3+b32,(a+b)(a2ab+b2)2,(a+b)(a+b)23ab2,(a+b)33ab(a+b)2,ab,由均值不等式可得:ab(a+b)32,(a+b)32,a+b2,当且仅当ab1时等号成立【点睛】本题考查了不等式的证明,掌握柯西不等式和均值不等式是关键,属于中档题