1、空间几何体的结构编稿:丁会敏 审稿:王静伟【学习目标】1利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球的结构特征;2认识由柱、锥、台、球组成的几何组合体的结构特征;3能用上述结构特征描绘现实生活中简单物体的结构【要点梳理】【高清课堂:空间几何体的结构394899 棱柱的结构特征】要点一、棱柱的结构特征1、定义:一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱在棱柱中,两个相互平行的面叫做棱柱的底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱侧面与底的公共顶点叫做棱柱的顶点棱柱中不在同一平面上的
2、两个顶点的连线叫做棱柱的对角线过不相邻的两条侧棱所形成的面叫做棱柱的对角面2、棱柱的分类:底面是三角形、四边形、五边形、的棱柱分别叫做三棱柱、四棱柱、五棱柱3、棱柱的表示方法:用表示底面的各顶点的字母表示棱柱,如下图,四棱柱、五棱柱、六棱柱可分别表示为、;用棱柱的对角线表示棱柱,如上图,四棱柱可以表示为棱柱或棱柱等;五棱柱可表示为棱柱、棱柱等;六棱柱可表示为棱柱、棱柱、棱柱等4、棱柱的性质:棱柱的侧棱相互平行.要点诠释:有两个面互相平行,其余各个面都是平行四边形,这些面围成的几何体不一定是棱柱如下图所示的几何体满足“有两个面互相平行,其余各个面都是平行四边形”这一条件,但它不是棱柱判定一个几何
3、体是否是棱柱时,除了看它是否满足:“有两个面互相平行,其余各个面都是平行四边形”这两个条件外,还要看其余平行四边形中“每两个相邻的四边形的公共边都互相平行”即“侧棱互相平行”这一条件,不具备这一条件的几何体不是棱柱【高清课堂:空间几何体的结构394899 棱锥的结构特征】要点二、棱锥的结构特征1、定义:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥这个多边形面叫做棱锥的底面有公共顶点的各个三角形叫做棱锥的侧面各侧面的公共顶点叫做棱锥的顶点相邻侧面的公共边叫做棱锥的侧棱;2、棱锥的分类:按底面多边形的边数,可以分为三棱锥、四棱锥、五棱锥 ;SSDDCCBBAA
4、ECBAS3、棱锥的表示方法:用表示顶点和底面的字母表示,如四棱锥要点诠释:棱锥有两个本质特征:(1)有一个面是多边形;(2)其余各面是有一个公共顶点的三角形,二者缺一不可【高清课堂:空间几何体的结构394899 旋转体的结构特征】要点三、圆柱的结构特征1、定义:以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体叫做圆柱旋转轴叫做圆柱的轴垂直于轴的边旋转而成的曲面叫做圆柱的底面平行于轴的边旋转而成的曲面叫做圆柱的侧面无论旋转到什么位置不垂直于轴的边都叫做圆柱的母线2、圆柱的表示方法:用表示它的轴的字母表示,如圆柱要点诠释:(1)用一个平行于圆柱底面的平面截圆柱,截面是一个与底面
5、全等的圆面(2)经过圆柱的轴的截面是一个矩形,其两条邻边分别是圆柱的母线和底面直径,经过圆柱的轴的截面通常叫做轴截面(3)圆柱的任何一条母线都平行于圆柱的轴要点四、圆锥的结构特征1、定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥旋转轴叫做圆锥的轴垂直于轴的边旋转而成的曲面叫做圆锥的底面不垂直于轴的边旋转而成的曲面叫做圆锥的侧面无论旋转到什么位置不垂直于轴的边都叫做圆锥的母线2、圆锥的表示方法:用表示它的轴的字母表示,如圆锥要点诠释:(1)用一个平行于圆锥底面的平面去截圆锥,截面是一个比底面小的圆面(2)经过圆锥的轴的截面是一个等腰三角形,其底边是圆锥底
6、面的直径,两腰是圆锥侧面的两条母线(3)圆锥底面圆周上任意一点与圆锥顶点的连线都是圆锥侧面的母线【高清课堂:空间几何体的结构394899 棱台的结构特征】要点五、棱台和圆台的结构特征、定义:用一个平行于棱锥(圆锥)底面的平面去截棱锥(圆锥),底面和截面之间的部分叫做棱台(圆台);原棱锥(圆锥)的底面和截面分别叫做棱台(圆台)的下底面和上底面;原棱锥(圆锥)的侧面被截去后剩余的曲面叫做棱台(圆台)的侧面;原棱锥的侧棱被平面截去后剩余的部分叫做棱台的侧棱;原圆锥的母线被平面截去后剩余的部分叫做圆台的母线;棱台的侧面与底面的公共顶点叫做棱台的顶点;圆台可以看做由直角梯形绕直角边旋转而成,因此旋转的轴
7、叫做圆台的轴.2、棱台的表示方法:用各顶点表示,如四棱台;3、圆台的表示方法:用表示轴的字母表示,如圆台;要点诠释:(1)棱台必须是由棱锥用平行于底面的平面截得的几何体所以,棱台可还原为棱锥,即延长棱台的所有侧棱,它们必相交于同一点(2)棱台的上、下底面是相似的多边形,它们的面积之比等于截去的小棱锥的高与原棱锥的高之比的平方(3)圆台可以看做由圆锥截得,也可以看做是由直角梯形绕其直角边旋转而成.(4)圆台的上、下底面的面积比等于截去的小圆锥的高与原圆锥的高之比的平方要点六、球的结构特征1、定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称球.半圆的半径叫做球的半径.半
8、圆的圆心叫做球心.半圆的直径叫做球的直径.2、球的表示方法:用表示球心的字母表示,如球O.要点诠释:(1)用一个平面去截一个球,截面是一个圆面如果截面经过球心,则截面圆的半径等于球的半径;如果截面不经过球心,则截面圆的半径小于球的半径(2)若半径为的球的一个截面圆半径为,球心与截面圆的圆心的距离为,则有要点七、特殊的棱柱、棱锥、棱台特殊的棱柱:侧棱不垂直于底面的棱柱称为斜棱柱;垂直于底面的棱柱称为直棱柱;底面是正多边形的直棱柱是正棱柱;底面是矩形的直棱柱叫做长方体;棱长都相等的长方体叫做正方体;特殊的棱锥:如果棱锥的底面是正多边形,且各侧面是全等的等腰三角形,那么这样的棱锥称为正棱锥;侧棱长等
9、于底面边长的正三棱锥又称为正四面体;特殊的棱台:由正棱锥截得的棱台叫做正棱台;注:简单几何体的分类如下表:要点八、简单组合体的结构特征1、组合体的基本形式:由简单几何体拼接而成的简单组合体;由简单几何体截去或挖去一部分而成的几何体;2、常见的组合体有三种:多面体与多面体的组合;多面体与旋转体的组合;旋转体与旋转体的组合. 多面体与多面体的组合体 由两个或两个以上的多面体组成的几何体称为多面体与多面体的组合体如下图(1)是一个四棱柱与一个三棱柱的组合体;如图(2)是一个四棱柱与一个四棱锥的组合体;如图(3)是一个三棱柱与一个三棱台的组合体 多面体与旋转体的组合体 由一个多面体与一个旋转体组合而成
10、的几何体称为多面体与旋转体的组合体如图(1)是一个三棱柱与一个圆柱组合而成的;如图(2)是一个圆锥与一个四棱柱组合而成的;而图(3)是一个球与一个三棱锥组合而成的 旋转体与旋转体的组合体 由两个或两个以上的旋转体组合而成的几何体称为旋转体与旋转体的组合体如图(1)是由一个球体和一个圆柱体组合而成的;如图(2)是由一个圆台和两个圆柱组合而成的;如图(3)是由一个圆台、一个圆柱和一个圆锥组合而成的 要点九、几何体中的计算问题几何体的有关计算中要注意下列方法与技巧:(1)在正棱锥中,要掌握正棱锥的高、侧面、等腰三角形中的斜高及高与侧棱所构成的两个直角三角形,有关证明及运算往往与两者相关(2)正四棱台
11、中要掌握其对角面与侧面两个等腰梯形中关于上、下底及梯形高的计算,有关问题往往要转化到这两个等腰梯形中另外要能够将正四棱台、正三棱台中的高与其斜高、侧棱在合适的平面图形中联系起来(3)研究圆柱、圆锥、圆台等问题的主要方法是研究它们的轴截面,这是因为在轴截面中,易找到所需有关元素之间的位置、数量关系(4)圆柱、圆锥、圆台的侧面展开是把立体几何问题转化为平面几何问题处理的重要手段之一(5)圆台问题有时需要还原为圆锥问题来解决(6)关于球的问题中的计算,常作球的一个大圆,化“球”为“圆”,应用平面几何的有关知识解决;关于球与多面体的切接问题,要恰当地选取截面,化“空间”为平面【经典例题】类型一:简单几
12、何体的结构特征例1判断下列说法是否正确 (1)棱柱的各个侧面都是平行四边形; (2)一个n(n3)棱柱共有2n个顶点; (3)棱柱的两个底面是全等的多边形;(4)如果棱柱有一个侧面是矩形,则其余各侧面也都是矩形【答案】(1)(2)(3)正确,(4)不正确 【解析】 (1)由棱柱的定义可知,棱柱的各侧棱互相平行,同一个侧面内两条底边也互相平行,所以各侧面都是平行四边形(2)一个n棱柱的底面是一个n边形,因此每个底面都有n个项点,两个底面的顶点数之和即为棱柱的顶点数,即2n个(3)因为棱柱同一个侧面内的两条底边平行且相等,所以棱柱的两个底面的对应边平行且相等,故棱柱的两个底面全等(4)如果棱柱有一
13、个侧面是矩形,只能保证侧棱垂直于该侧面的底边,但其余侧面的侧棱与相应底边不一定垂直,因此其余侧面不一定是矩形 故(1)(2)(3)正确,(4)不正确【总结升华】解决这类与棱柱、棱锥、棱台有关的命题真假判定的问题,其关键在于准确把握它们的结构特征,也就是要以棱柱、棱锥、棱台概念的本质内涵为依据,以具体实物和图形为模型来进行判定举一反三:【变式1】如下图中所示几何体中是棱柱有( ) A1 B2个 C3个 D4个【答案】C例2有下面五个命题: (1)侧面都是全等的等腰三角形的棱锥是正棱锥; (2)侧棱都相等的棱锥是正棱锥; (3)底面是正方形的棱锥是正四棱锥; (4)正四面体就是正四棱锥; (5)顶
14、点在底面上的射影既是底面多边形的内心,又是底面多边形的外心的棱锥必是正棱锥其中正确命题的个数是( ) A1个 B2个 C3个 D4个 【答案】 A 【解析】 本题主要考查正棱锥的概念,关键看是否满足定义中的两个条件 命题(1)中的“各侧面都是全等的等腰三角形”并不能保证底面是正多边形,也不能保证顶点在底面上的射影是底面的中心,故不是正棱锥,如下图(1)中的三棱锥S-ABC,可令SA=SB=BC=Ac=3,SC=AB=1,则此三棱锥的各侧面都是全等的等腰三角形,但它不是正三棱锥;命题(2)中的“侧棱都相等”并不能保证底面是正多边形,如下图(2)中的三棱锥P-DEF,可令PD=PE=PF=1,EF
15、=1,三条侧棱都相等,但它不是正三棱锥;命题(3)中的“底面是正方形的棱锥”,其顶点在底面上的射影不一定是底面的中心,如下图(3),从正方体中截取一个四棱锥D1-ABCD,底面是正方形,但它不是正四棱锥;命题(4)中的“正四面体”是正三棱锥三棱锥中共有4个面,所以三棱锥也叫四面体四个面都是全等的正三角形的正三棱锥也叫正四面体;命题(5)中的“顶点在底面上的射影既是底面多边形的内心,又是外心”,说明了底面是一个正多边形,符合正棱锥的定义 举一反三:【变式1】如果一个面是多边形,其余各面都是三角形的几何体一定是棱锥这种说法是否正确?如果正确说明理由;如果不正确,举出反例【答案】不正确【解析】如图所
16、示的几何体由两个底面相等的四棱锥组合而成,它有一个面是四边形,其余各面都是三角形,但是该几何体不是棱锥例3判断下图所示的几何体是不是台体?为什么? 【解析】 三个图都不是台体(1)AA1,DD1交于一点,而BB1,CC1交于另一点,此图不能还原成锥体,故不是台体:(2)中面ABCD与面A1B1C1D1不平行,故也不是台体;(3)中应O与O1不平行,故也不是台体 【总结升华】 判断一个几何体是否为台体,必须紧扣台体的两个本质特征:(1)由锥体截得的;(2)截面平行于锥体的底面即棱台的两底面平行,且侧棱必须相交于同一点;圆台的两底面平行,且两底面圆心的连线与两底面垂直举一反三:【变式1】 判断如下
17、图所示的几何体是不是台体?为什么? 【答案】 都不是台体【解析】因为和都不是由棱锥所截得的,故都不是台体;虽然是由棱锥所截,但截面不和底面平行,故不是台体只有用平行于锥体底面的平面去截锥体,底面与截面之间的部分才是台体是一个台体,因为它是用平行于圆锥SO底面的平面截圆锥SO而得的类型二:几何体中的基本计算 例4一个圆台的母线长为12 cm,两底面面积分别为4cm2和25cm2求(1)圆台的高;(2)截得此圆台的圆锥的母线长【答案】(1)(2)20 【解析】画出轴截面,依据勾股定理及相似三角形知识即可求解 (1)如右图,圆台的轴截面是等腰梯形ABCD,由已知可得上底面半径O1A=2 cm,下底面
18、半径OB=5 cm,又腰长AB=12 cm,所以圆台的高为 (cm) (2)设截得此圆台的圆锥的母线长为,则由SAO1SBO,可得, =20(cm) 故截得此圆台的圆锥的母线长为20 cm【总结升华】对于这类旋转体的有关计算问题,其关键在于作出它们的轴截面(即过旋转铀的截面),再把它们转化为平面几何问题即可举一反三:【变式1】已知圆台的上、下底面积之比为1:9,圆台的高为10,求截得圆台的圆锥的高【答案】15【解析】设圆锥的高为,上、下底半径为则,解得类型三、简单几何体的组合体例5(1)一个正方体内接于一个球,过球心作一截面,如下图所示,则截面可能的图形是( ) A B C D (2)如右图所
19、示,在棱长为1的正方体内有两个球相外切且又分别与正方体内切,求两球半径之和 【答案】 (1)C;(2) 【解析】 (1)当截面平行于正方体的一个侧面时得,当截面过正方体的体对角线时得,当截面不平行于任何侧面也不过对角线时得,但无论如何都不能截出 (2)此题的关键在于作截面球不可能与边AB、CD相切,一个球在正方体内,一般知道作对角面,而两个球的球心连线也应在正方体的体对角线上,故仍需作正方体的对角面,得如右图所示的截面图球心O1和O2在AC上,过O1、O2分别作AD、BC的垂线交于E、F两点设小球半径为r,大球半径为R则由AB=1,得, 【总结升华】作适当的截面是解决球与其他几何体形成的组合体
20、问题的关键举一反三:【变式1】 圆锥底面半径为1cm,高为,其中有一个内接正方体,求这个内接正方体的棱长.【答案】【解析】过圆锥的顶点S和正方体底面的一条对角线CD作圆锥的截面,得圆锥的轴截面SEF,正方体对角面,如图所示.设正方体棱长为x,则.作SOEF于O,则,OE=1, ECC1EOS, ,即. ,即内接正方体棱长为【总结升华】此题也可以利用SCDSEF而求.两个几何体相接、相切的问题,关键在于发现一些截面之间的图形关系.常常是通过分析几个轴截面组合的平面图形中的一些相似,利用相似比列出方程而求.注意截面图形中各线段长度的计算.类型四、简单几何体的表面展开与折叠问题例6长方体ABCD-A
21、1B1C1D1(如图)中,AB=3,BC=4,A1A=5,现有一甲壳虫从A出发沿长方体表面爬行到C来获取食物,试画出它的最短爬行路线,并求其路程的最小值 【答案】【解析】 把长方体的部分面展开,如右图所示对甲、乙、丙三种展开图利用勾股定理可得AC1的长分别为、,由此可见乙是最短线路,所以甲壳虫可以先在长方形ABB1A1内由A到E,再在长方形BCC1B1内由E到C1,也可以先在长方形AA1D1D内由A到F,再在长方形DCC1D1内到F到C1,其最短路程为 【总结升华】在几何体表面求最短路径问题,就是要“化折为直”,因此需要把几何体表面展开,本题注意要分三种情况讨论举一反三:【变式1】 圆台的上、
22、下底面半径分别为5 cm、10 cm,母线长A8=20 cm,从圆台母线AB的中点M拉一条绳子,绕圆台侧面转到A点,如图求: (1)绳子的最短长度; (2)当绳子最短时,上底圆周上的点到绳子的最短距离【答案】(1)绳子的最短长度为50 cm(2)上底圆周上的点到绳子的最短距离为4 cm例7根据下图所给的平面图形,画出立体图形 【解析】 将各平面图形折起后形成的空间图形如下图所示 【总结升华】平面图形的折叠问题实质上是多面体的表面展开问题的逆向问题(即逆向过程)这两类问题都是立体几何中的基本问题,我们必须熟练掌握折叠与展开这两个基本功,并能准确地画出折叠和展开前后的平面图形和立体图形,找到这两个图形之间的构成关系