ImageVerifierCode 换一换
格式:DOCX , 页数:20 ,大小:536.16KB ,
资源ID:122990      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-122990.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020年中考数学必考专题16 全等三角形判定和性质问题(解析版))为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2020年中考数学必考专题16 全等三角形判定和性质问题(解析版)

1、专题16 全等三角形判定和性质问题 专题知识回顾 1全等三角形:能够完全重合的两个图形叫做全等形。能够完全重合的两个三角形叫做全等三角形。2全等三角形的表示全等用符号“”表示,读作“全等于”。如ABCDEF,读作“三角形ABC全等于三角形DEF”。注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。3全等三角形的性质: 全等三角形的对应角相等、对应边相等。 4三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)边边边定

2、理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。5直角三角形全等的判定:HL定理:有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)专题典型题考法及解析 【例题1】(2019贵州省安顺市)如图,点B、F、C、E在一条直线上,ABED,ACFD,那么添加下列一个条件后,仍无法判定ABCDEF的是()A ADBACDFCABEDDBFEC【解答】选项A、添加AD不能判定ABCDEF,故本选项正确;选项B、添加ACDF可用AAS进行判定,故本选项错误;选项C、添加ABDE可用AAS进行判定,故本选项错误;选项D、添加BFEC可得出BCEF,然后

3、可用ASA进行判定,故本选项错误故选:A【例题2】(2019黑龙江省齐齐哈尔市)如图,已知在ABC和DEF中,BE,BFCE,点B、F、C、E在同一条直线上,若使ABCDEF,则还需添加的一个条件是 _(只填一个即可)【答案】ABDE【解析】添加ABDE;BFCE,BCEF,在ABC和DEF中,ABCDEF(SAS)【例题3】(2019铜仁)如图,ABAC,ABAC,ADAE,且ABDACE求证:BDCE【答案】见解析。【解析】证明:ABAC,ADAE,BAE+CAE90,BAE+BAD90,CAEBAD又ABAC,ABDACE,ABDACE(ASA)BDCE 专题典型训练题 一、选择题1.

4、(2019广东)如图,正方形ABCD的边长为4,延长CB至E使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于M,连接AM、AF,H为AD的中点,连接FH分别与AB.AM交于点N、K则下列结论:ANHGNF;AFN=HFG;FN=2NK;SAFN : SADM =1 : 4其中正确的结论有( )A1个 B2个 C3个 D4个【答案】C【解析】AH=GF=2,ANH=GNF,AHN=GFN,ANHGNF(AAS),正确;由得AN=GN=1,NGFG,NA不垂直于AF,FN不是AFG的角平分线AFNHFG,错误;由AKHMKF,且AH:MF=1:3,KH:KF=1:3,又FN=HN,K

5、为NH的中点,即FN=2NK,正确;SAFN =ANFG=1,SADM =DMAD=4,SAFN : SADM =1 : 4,正确.2.(2019广西池河)如图,在正方形ABCD中,点E,F分别在BC,CD上,BECF,则图中与AEB相等的角的个数是()A1B2C3D4【答案】B【解析】根据正方形的性质,利用SAS即可证明ABEBCF,再根据全等三角形的性质可得BFCAEB,进一步得到BFCABF,从而求解证明:四边形ABCD是正方形,ABBC,ABBC,ABEBCF90,在ABE和BCF中,ABEBCF(SAS),BFCAEB,BFCABF,故图中与AEB相等的角的个数是23.(2019湖北

6、天门)如图,AB为O的直径,BC为O的切线,弦ADOC,直线CD交BA的延长线于点E,连接BD下列结论:CD是O的切线;CODB;EDAEBD;EDBCBOBE其中正确结论的个数有()A4个B3个C2个D1个【答案】A【解析】连结DOAB为O的直径,BC为O的切线,CBO90,ADOC,DAOCOB,ADOCOD又OAOD,DAOADO,CODCOB在COD和COB中,CODCOB(SAS),CDOCBO90又点D在O上,CD是O的切线;故正确,CODCOB,CDCB,ODOB,CO垂直平分DB,即CODB,故正确;AB为O的直径,DC为O的切线,EDOADB90,EDA+ADOBDO+ADO

7、90,ADEBDO,ODOB,ODBOBD,EDADBE,EE,EDAEBD,故正确;EDOEBC90,EE,EODECB,ODOB,EDBCBOBE,故正确。4.(2019湖北孝感)如图,正方形ABCD中,点E.F分别在边CD,AD上,BE与CF交于点G若BC4,DEAF1,则GF的长为()ABCD【答案】A【解析】证明BCECDF(SAS),得CBEDCF,所以CGE90,根据等角的余弦可得CG的长,可得结论正方形ABCD中,BC4,BCCDAD4,BCECDF90,AFDE1,DFCE3,BECF5,在BCE和CDF中,BCECDF(SAS),CBEDCF,CBE+CEBECG+CEB9

8、0CGE,cosCBEcosECG,CG,GFCFCG55.(2019山东省滨州市)如图,在OAB和OCD中,OAOB,OCOD,OAOC,AOBCOD40,连接AC,BD交于点M,连接OM下列结论:ACBD;AMB40;OM平分BOC;MO平分BMC其中正确的个数为()A4B3C2D1【答案】B【解析】由SAS证明AOCBOD得出OCAODB,ACBD,正确;由全等三角形的性质得出OACOBD,由三角形的外角性质得:AMB+OACAOB+OBD,得出AMBAOB40,正确;作OGMC于G,OHMB于H,如图所示:则OGCOHD90,由AAS证明OCGODH(AAS),得出OGOH,由角平分线

9、的判定方法得出MO平分BMC,正确;即可得出结论AOBCOD40,AOB+AODCOD+AOD,即AOCBOD,在AOC和BOD中,AOCBOD(SAS),OCAODB,ACBD,正确;OACOBD,由三角形的外角性质得:AMB+OACAOB+OBD,AMBAOB40,正确;作OGMC于G,OHMB于H,如图所示:则OGCOHD90,在OCG和ODH中,OCGODH(AAS),OGOH,MO平分BMC,正确;正确的个数有3个。6.(2019河南)如图,在四边形ABCD中,ADBC,D90,AD4,BC3分别以点A,C为圆心,大于AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点

10、O若点O是AC的中点,则CD的长为()A2B4C3D故选:A【解析】连接FC,根据基本作图,可得OE垂直平分AC,由垂直平分线的性质得出AFFC再根据ASA证明FOABOC,那么AFBC3,等量代换得到FCAF3,利用线段的和差关系求出FDADAF1然后在直角FDC中利用勾股定理求出CD的长如图,连接FC,则AFFCADBC,FAOBCO在FOA与BOC中,FOABOC(ASA),AFBC3,FCAF3,FDADAF431在FDC中,D90,CD2+DF2FC2,CD2+1232,CD2故选:A7(2019山东临沂)如图,D是AB上一点,DF交AC于点E,DEFE,FCAB,若AB4,CF3,

11、则BD的长是()A0.5B1C1.5D2【答案】B【解析】根据平行线的性质,得出AFCE,ADEF,根据全等三角形的判定,得出ADECFE,根据全等三角形的性质,得出ADCF,根据AB4,CF3,即可求线段DB的长CFAB,AFCE,ADEF,在ADE和FCE中,ADECFE(AAS),ADCF3,AB4,DBABAD431二、填空题8.(2019四川成都)如图,在ABC中,AB=AC,点D,E都在边BC上,BAD=CAE,若BD=9,则CE的长为 .【答案】9 【解析】此题考察的是全等三角形的性质和判定,因为ABC是等腰三角形,所以有AB=AC,BAD=CAE,ABD=ACE,所以ABDAC

12、E(ASA),所以BD=二次,EC=9.9.(2019湖南邵阳)如图,已知ADAE,请你添加一个条件,使得ADCAEB,你添加的条件是 (不添加任何字母和辅助线)【答案】ABAC或ADCAEB或ABEACD。【解析】根据图形可知证明ADCAEB已经具备了一个公共角和一对相等边,因此可以利用ASA.SAS、AAS证明两三角形全等AA,ADAE,可以添加ABAC,此时满足SAS;添加条件ADCAEB,此时满足ASA;添加条件ABEACD,此时满足AAS,故答案为ABAC或ADCAEB或ABEACD。10.(2019天津)如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE,折叠该纸片,

13、使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上,若DE=5,则GE的长为 .【答案】【解析】因为四边形ABCD是正方形,易得AFBDEA,AF=DE=5,则BF=13.又易知AFHBFA,所以,即AH=,AH=2AH=,由勾股定理得AE=13,GE=AE-AG=11.(2019广东省广州市)如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),DAM45,点F在射线AM上,且AFBE,CF与AD相交于点G,连接EC,EF,EG,则下列结论:ECF45;AEG的周长为(1+)a;BE2+DG2EG2;EAF的面积的最大值a2其中正确的结论是 (填写所有正确

14、结论的序号)故答案为【解析】如图1中,在BC上截取BHBE,连接EHBEBH,EBH90,EHBE,AFBE,AFEH,DAMEHB45,BAD90,FAEEHC135,BABC,BEBH,AEHC,FAEEHC(SAS),EFEC,AEFECH,ECH+CEB90,AEF+CEB90,FEC90,ECFEFC45,故正确,如图2中,延长AD到H,使得DHBE,则CBECDH(SAS),ECBDCH,ECHBCD90,ECGGCH45,CGCG,CECH,GCEGCH(SAS),EGGH,GHDG+DH,DHBE,EGBE+DG,故错误,AEG的周长AE+EG+AGAG+GHAD+DH+AEA

15、E+EB+ADAB+AD2a,故错误,设BEx,则AEax,AFx,SAEF(ax)xx2+ax(x2ax+a2a2)(xa)2+a2,0,xa时,AEF的面积的最大值为a2故正确,故答案为12(2019山东临沂)如图,在ABC中,ACB120,BC4,D为AB的中点,DCBC,则ABC的面积是【答案】8【解析】根据垂直的定义得到BCD90,得到长CD到H使DHCD,由线段中点的定义得到ADBD,根据全等三角形的性质得到AHBC4,HBCD90,求得CD2,于是得到结论DCBC,BCD90,ACB120,ACD30,延长CD到H使DHCD,D为AB的中点,ADBD,在ADH与BCD中,ADHB

16、CD(SAS),AHBC4,HBCD90,ACH30,CHAH4,CD2,ABC的面积2SBCD2428,故答案为:8三、解答题13.(2019湖南长沙)如图,正方形ABCD,点E,F分别在AD,CD上,且DECF,AF与BE相交于点G(1)求证:BEAF;(2)若AB4,DE1,求AG的长【答案】见解析。【解析】本题考查了全等三角形的判定与性质、正方形的性质、勾股定理以及三角形面积公式;熟练掌握正方形的性质,证明三角形全等是解题的关键(1)证明:四边形ABCD是正方形,BAEADF90,ABADCD,DECF,AEDF,在BAE和ADF中,BAEADF(SAS),BEAF;(2)解:由(1)

17、得:BAEADF,EBAFAD,GAE+AEG90,AGE90,AB4,DE1,AE3,BE5,在RtABE中,ABAEBEAG,AG14.(2019湖南怀化)已知:如图,在ABCD中,AEBC,CFAD,E,F分别为垂足(1)求证:ABECDF;(2)求证:四边形AECF是矩形【答案】见解析。【解析】(1)证明:四边形ABCD是平行四边形,BD,ABCD,ADBC,AEBC,CFAD,AEBAECCFDAFC90,在ABE和CDF中,ABECDF(AAS);(2)证明:ADBC,EAFAEB90,EAFAECAFC90,四边形AECF是矩形15.(2019湖南岳阳)如图所示,在菱形ABCD中

18、,点E.F分别为AD.CD边上的点,DEDF,求证:12【答案】见解析。【解析】由菱形的性质得出ADCD,由SAS证明ADFCDE,即可得出结论证明:四边形ABCD是菱形,ADCD,在ADF和CDE中,ADFCDE(SAS),1216.(2019甘肃)如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AGED交DE于点F,交CD于点G(1)证明:ADGDCE;(2)连接BF,证明:ABFB【解析】本题主要考查了正方形的性质以及全等三角形的判定与性质,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形(1)四边形ABCD是正方形,ADGC90,A

19、DDC,又AGDE,DAG+ADF90CDE+ADF,DAGCDE,ADGDCE(ASA);(2)如图所示,延长DE交AB的延长线于H,E是BC的中点,BECE,又CHBE90,DECHEB,DCEHBE(ASA),BHDCAB,即B是AH的中点,又AFH90,RtAFH中,BFAHAB17.(2019山东枣庄)在ABC中,BAC90,ABAC,ADBC于点D(1)如图1,点M,N分别在AD,AB上,且BMN90,当AMN30,AB2时,求线段AM的长;(2)如图2,点E,F分别在AB,AC上,且EDF90,求证:BEAF;(3)如图3,点M在AD的延长线上,点N在AC上,且BMN90,求证:

20、AB+ANAM【答案】见解析。【解析】(1)根据等腰三角形的性质、直角三角形的性质得到ADBDDC,求出MBD30,根据勾股定理计算即可;BAC90,ABAC,ADBC,ADBDDC,ABCACB45,BADCAD45,AB2,ADBDDC,AMN30,BMD180903060,MBD30,BM2DM,由勾股定理得,BM2DM2BD2,即(2DM)2DM2()2,解得,DM,AMADDM;(2)证明:ADBC,EDF90,BDEADF,在BDE和ADF中,BDEADF(ASA)BEAF;(3)证明:过点M作MEBC交AB的延长线于E,AME90,则AEAM,E45,MEMA,AME90,BMN

21、90,BMEAMN,在BME和AMN中,BMEAMN(ASA),BEAN,AB+ANAB+BEAEAM18.(2019河北)如图,ABC和ADE中,ABAD6,BCDE,BD30,边AD与边BC交于点P(不与点B,C重合),点B,E在AD异侧,I为APC的内心(1)求证:BADCAE;(2)设APx,请用含x的式子表示PD,并求PD的最大值;(3)当ABAC时,AIC的取值范围为mAICn,分别直接写出m,n的值【答案】见解析。【解析】(1)在ABC和ADE中,(如图1)ABCADE(SAS)BACDAE即BAD+DACDAC+CAEBADCAE(2)AD6,APx,PD6x当ADBC时,AP

22、AB3最小,即PD633为PD的最大值(3)如图2,设BAP,则APC+30,ABACBAC90,PCA60,PAC90,I为APC的内心AI、CI分别平分PAC,PCA,IACPAC,ICAPCAAIC180(IAC+ICA)180(PAC+PCA)180(90+60)+105090,105+105150,即105AIC150,m105,n15019.(2019江苏无锡)如图,在ABC中,ABAC,点D、E分别在AB、AC上,BDCE,BE、CD相交于点O(1)求证:DBCECB;(2)求证:OBOC【答案】见解析。【解析】(1)根据等腰三角形的性质得到ECBDBC根据全等三角形的判定定理即可得到结论;证明:ABAC,ECBDBC,在DBC与ECB中,DBCECB(SAS);(2)根据全等三角形的性质得到DCBEBC根据等腰三角形的判定定理即可得到OBOC证明:由(1)知DBCECB,DCBEBC,OBOC