ImageVerifierCode 换一换
格式:DOCX , 页数:15 ,大小:558.49KB ,
资源ID:122980      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-122980.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020年中考数学必考专题21 菱形(解析版))为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2020年中考数学必考专题21 菱形(解析版)

1、专题21 菱形 专题知识回顾 1菱形的定义 :有一组邻边相等的平行四边形叫做菱形。2.菱形的性质:(1)菱形的四条边都相等;(2)菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。 3.菱形的判定定理:(1)一组邻边相等的平行四边形是菱形; (2)对角线互相垂直的平行四边形是菱形; (3)四条边相等的四边形是菱形。4菱形的面积:S菱形=底边长高=两条对角线乘积的一半专题典型题考法及解析 【例题1】(2019内蒙古赤峰)如图,菱形ABCD周长为20,对角线AC、BD相交于点O,E是CD的中点,则OE的长是()A2.5B3C4D5【答案】A【解析】四边形ABCD为菱形,CDBC=204=5,

2、且O为BD的中点,E为CD的中点,OE为BCD的中位线,OE=12CB2.5【例题2】(2019广西梧州)如图,在菱形中,将菱形绕点逆时针方向旋转,对应得到菱形,点在上,与交于点,则的长是【答案】【解析】连接交于,如图所示:四边形是菱形,由旋转的性质得:,四边形是菱形,。 专题典型训练题 一、选择题1.(2019四川泸州)一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为()A8B12C16D32【答案】【解析】如图所示:四边形ABCD是菱形,AOCO=12AC,DOBO=12BD,ACBD,面积为28,12ACBD2ODAO28 菱形的边长为6,OD2+OA236 ,由两式可得

3、:(OD+AO)2OD2+OA2+2ODAO36+2864OD+AO8,2(OD+AO)16,即该菱形的两条对角线的长度之和为162.(2019四川省绵阳市)如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),AOC=60,则对角线交点E的坐标为()A.B. C. D. 【答案】D【解析】过点E作EFx轴于点F,四边形OABC为菱形,AOC=60,=30,FAE=60,A(4,0),OA=4,=2,EF=,OF=AO-AF=4-1=3,3.(2019四川省广安市)如图,在边长为的菱形中,过点作于点,现将ABE沿直线AE翻折至AFE的位置,AF与CD交于点G则CG等于(

4、) A. B.1 C. D. .【答案】A【解析】因为B=30,AB=,AEBC,所以BE=,所以EC=-,则CF=3-,又因为CGAB,所以,所以CG=.4.(2019四川省雅安市)如图,在四边形ABCD中,AB=CD,AC、BD是对角线 ,E、F、G、H分别是AD、BD、BC、AC的中点,连接EF、FG、GH、HE,则四边形EFGH的形状是( )A平行四边形 B矩形 C菱形 D正方形【答案】C【解析】由点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,根据三角形中位线性质,得EFGHAB,EHFGCD,又由AB=CD,得EFFGGHEH时,四边形EFGH是菱形点E、F

5、、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,EFGHAB,EHFGCD,AB=CD,EFFGGHEH时,四边形EFGH是菱形,故选C5. (2019贵州安顺)如图,在菱形ABCD中,按以下步骤作图:分别以点C和点D为圆心,大于CD的长为半径作弧,两弧相交于M、N两点;作直线MN,且MN恰好经过点A,与CD交于点E,连接BE则下列说法错误的是()AABC60BSABE2SADEC若AB4,则BE4DsinCBE【答案】C 【解析】由作法得AE垂直平分CD,即CEDE,AECD,四边形ABCD为菱形,ADCD2DE,ABDE,在RtADE中,cosD,D60,ABC60,所以A

6、选项的结论正确;SABEABAE,SADEDEAE,而AB2DE,SABE2SADE,所以B选项的结论正确;若AB4,则DE2,AE2,在RtABE中,BE2,所以C选项的结论错误;作EHBC交BC的延长线于H,如图,设AB4a,则CE2a,BC4a,BE2a,在CHE中,ECHD60,CHa,EHa,sinCBE,所以D选项的结论正确故选:C6.(2019贵州贵阳)如图所示,菱形ABCD的周长是4cm,ABC60,那么这个菱形的对角线AC的长是()A1cmB2 cmC3cmD4cm【答案】A 【解析】由于四边形ABCD是菱形,AC是对角线,根据ABC60,而ABBC,易证BAC是等边三角形,

7、从而可求AC的长四边形ABCD是菱形,AC是对角线,ABBCCDAD,ABC60,ABC是等边三角形,ABBCAC,菱形ABCD的周长是4cm,ABBCAC1cm7.(2019贵州省铜仁市)如图,四边形ABCD为菱形,AB2,DAB60,点E、F分别在边DC、BC上,且CECD,CFCB,则SCEF()ABCD【答案】D【解答】四边形ABCD为菱形,AB2,DAB60ABBCCD2,DCB60CECD,CFCBCECFCEF为等边三角形SCEF8.(2019河北省)如图,菱形ABCD中,D150,则1()A30B25C20D15【答案】D【解答】四边形ABCD是菱形,D150,ABCD,BAD

8、21,BAD+D180,BAD18015030,115二、填空题9.(2019广西北部湾)如图,在菱形ABCD中,对角线AC,BD交与点O,过点A作AHBC于点H,已知BO=4,S菱形ABCD=24,则AH= .【答案】.【解析】本题考查了菱形的性质、勾股定理以及菱形面积公式,根据菱形面积=对角线积的一半可求AC,再根据勾股定理求出BC,然后由菱形的面积即可得出结果四边形ABCD是菱形,BO=DO=4,AO=CO,ACBD,BD=8.S菱形ABCD=ACBD=24,AC=6,OC=AC=3,BC=5,S菱形ABCD=BCAH=24,AH=.10(2019内蒙古通辽)如图,在边长为3的菱形ABC

9、D中,A60,M是AD边上的一点,且AMAD,N是AB边上的一动点,将AMN沿MN所在直线翻折得到AMN,连接AC则AC长度的最小值是 【答案】1【解析】过点M作MHCD交CD延长线于点H,连接CM,AMAD,ADCD3AM1,MD2CDAB,HDMA60HDMD1,HMHDCH4MC将AMN沿MN所在直线翻折得到AMN,AMAM1,点A在以M为圆心,AM为半径的圆上,当点A在线段MC上时,AC长度有最小值AC长度的最小值MCMA111(2019湖南常德)规定:如果一个四边形有一组对边平行,一组邻边相等,那么称此四边形为广义菱形根据规定判断下面四个结论:正方形和菱形都是广义菱形;平行四边形是广

10、义菱形;对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;若M、N的坐标分别为(0,1),(0,1),P是二次函数yx2的图象上在第一象限内的任意一点,PQ垂直直线y1于点Q,则四边形PMNQ是广义菱形其中正确的是 (填序号)【答案】【解析】根据广义菱形的定义,正方形和菱形都有一组对边平行,一组邻边相等,正确;平行四边形有一组对边平行,没有一组邻边相等,错误;由给出条件无法得到一组对边平行,错误;设点P(m,m2),则Q(m,1),MP,PQ+1,点P在第一象限,m0,MP+1,MPPQ,又MNPQ,四边形PMNQ是广义菱形正确;故答案为12.(2019湖北十堰)如图,已知菱形ABCD的对

11、角线AC,BD交于点O,E为BC的中点,若OE3,则菱形的周长为 【答案】24【解析】四边形ABCD是菱形,ABBCCDAD,BODO,点E是BC的中点,OE是BCD的中位线,CD2OE236,菱形ABCD的周长462413.(2019北京市) 把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为_【答案】12【解析】设图1中小直角三角形的两直角边长分别为a,b (ab);则由图2和图3列得方程组,由加减消元法得,菱形的面积.故填12.14(2019辽宁抚顺)如图,菱形ABCD的边长为4cm,A60,BD是以点A为圆心,AB长

12、为半径的弧,CD是以点B为圆心,BC长为半径的弧,则阴影部分的面积为 cm2【答案】4【解析】连接BD,判断出ABD是等边三角形,根据等边三角形的性质可得ABD60,再求出CBD60,然后求出阴影部分的面积SABD,计算即可得解如图,连接BD,四边形ABCD是菱形,ABAD,A60,ABD是等边三角形,ABD60,又菱形的对边ADBC,ABC18060120,CBD1206060,S阴影S扇形BDC(S扇形ABDSABD),SABD,44cm2三、解答题15(2019湖南岳阳)如图,在菱形ABCD中,点E、F分别为AD、CD边上的点,DEDF,求证:12【答案】见解析【解析】证明:四边形ABC

13、D是菱形,ADCD,在ADF和CDE中,ADFCDE(SAS),1216. (2019海南省)如图,在边长为l的正方形ABCD中,E是边CD的中点,点P是边AD上一点(与点A、D不重合),射线PE与BC的延长线交于点Q(1)求证:PDEQCE;(2)过点E作EFBC交PB于点F,连结AF,当PBPQ时,求证:四边形AFEP是平行四边形;请判断四边形AFEP是否为菱形,并说明理由【解析】(1)由四边形ABCD是正方形知DECQ90,由E是CD的中点知DECE,结合DEPCEQ即可得证;(2)由PBPQ知PBQQ,结合ADBC得APBPBQQEPD,由PDEQCE知PEQE,再由EFBQ知PFBF

14、,根据RtPAB中AFPFBF知APFPAF,从而得PAFEPD,据此即可证得PEAF,从而得证;设APx,则PD1x,若四边形AFEP是菱形,则PEPAx,由PD2+DE2PE2得关于x的方程,解之求得x的值,从而得出四边形AFEP为菱形的情况【解答】(1)四边形ABCD是正方形,DECQ90,E是CD的中点,DECE,又DEPCEQ,PDEQCE(ASA);(2)PBPQ,PBQQ,ADBC,APBPBQQEPD,PDEQCE,PEQE,EFBQ,PFBF,在RtPAB中,AFPFBF,APFPAF,PAFEPD,PEAF,EFBQAD,四边形AFEP是平行四边形;当AP时,四边形AFEP

15、是菱形设APx,则PD1x,若四边形AFEP是菱形,则PEPAx,CD1,E是CD中点,DE,在RtPDE中,由PD2+DE2PE2得(1x)2+()2x2,解得x,即当AP时,四边形AFEP是菱形17. (2019北京市)如图1,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连接EF(1)求证:ACEF;(2)如图2,延长EF交CD的延长线于点G,连接BD交AC于点O,若BD=4,tanG=,求AO的长 图1 图2 【答案】见解析。【解析】由四边形ABCD为菱形易得AB=AD,AC平分BAD,结合BE=DF,根据等腰AEF中的三线合一,证得ACEF.;菱形ABCD中有ACBD,结合ACEF得BDEF.进而有;得出OA的值.(1)证明:四边形ABCD为菱形AB=AD,AC平分BADBE=DFAE=AFAEF是等腰三角形AC平分BADACEF(2)解:菱形ABCD中有ACBD,结合ACEF. BDEF. 又BD=4,tanG= AO=OC=1.