ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:58KB ,
资源ID:122730      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-122730.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(中考数学复习专题04 换元法专题研究(原卷版))为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

中考数学复习专题04 换元法专题研究(原卷版)

1、备战2020中考数学解题方法专题研究专题4 换元法专题【方法简介】解一些复杂的因式分解问题,常用到换元法,即对结构比较复杂的多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),则能使复杂的问题简单化,明朗化,在减少多项式项数,降低多项式结构复杂程度等方面有独到作用。换元法又称变量替换法 , 是我们解题常用的方法之一 。利用换元法 , 可以化繁为简 , 化难为易 , 从而找到解题的捷径 。【真题演练】1. 若(x2+y22)2=9,则x2+y2的值为()A1 B1 C5 D5或12. 用“整体法”求得方程(2x+5)24(2x+5)+3=0的解为()Ax1=1,x2=3Bx1=2,x2

2、=3Cx1=3,x2=1Dx1=2,x2=13. 若实数a,b满足(2a+2b)(2a+2b2)8=0,则a+b= 4. 阅读下面的材料,回答问题:解方程x45x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y25y+4=0 ,解得y1=1,y2=4当y=1时,x2=1,x=1;当y=4时,x2=4,x=2;原方程有四个根:x1=1,x2=1,x3=2,x4=2(1)在由原方程得到方程的过程中,利用 法达到 的目的,体现了数学的转化思想【名词释义】概念:换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数

3、称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。经验:换元法,可以运用于因式分解、解方程或方程组等方面。换元法是数学中重要的解题方法,对于一些较繁较难的数学问题,若能根据问题的特点,进行巧妙的换元,则可以收到事半功倍的效果,现举例说明.详解:换元法主要有双换元、整体换元、均值换元,倒数换元几种形式。【典例示例】例题1:解方程:(x1)(x2)(x3)(x4)24例题2:解方程组【强化巩固】1. 已知方程x2+3x4=0的解是x1=1,x2=4,则方程(2x+3)2+3(2x+3)4=0的解是()Ax1=1,x2=3.

4、5Bx1=1,x2=3.5 Cx1=1,x2=3.5Dx1=1,x2=3.52. 计算:的结果应该是( )A. B. C. D.3. 已知x是实数且满足(x2+3x)2+2(x2+3x)3=0,那么x2+3x的值为()A3 B3或1 C1 D1或34. 如果(m+n)(m+n+5)=6,则m+n= 5. 设x,y是一个直角三角形两条直角边的长,且(x2+y2)(x2+y21)=20,则这个直角三角形的斜边长为 6. 7. 解方程:.8. 阅读下面的材料,解答后面的问题材料:“解方程x43x2+2=0”解:设x2=y,原方程变为y23y+2=0,(y1)(y2)=0,得y=1或y=2当y=1时,即x2=1,解得x=1;当y=2时,即x2=2,解得x=综上所述,原方程的解为x1=1,x2=1,x3=x4=问题:(1)上述解答过程采用的数学思想方法是 A加减消元法 B代入消元法 C换元法 D待定系数法(2)采用类似的方法解方程:(x22x)2x2+2x6=03原创