ImageVerifierCode 换一换
格式:DOC , 页数:31 ,大小:489.50KB ,
资源ID:122609      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-122609.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2018-2019学年四川省成都市天府新区八年级(下)期末数学试卷(含详细解答))为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2018-2019学年四川省成都市天府新区八年级(下)期末数学试卷(含详细解答)

1、2018-2019学年四川省成都市天府新区八年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分在每小题给出的四个选项中只有一项是符合题目要求的)1(3分)下列图形中,是轴对称图形,不是中心对称图形的是()A正方形B正三角形C正六边形D禁止标志2(3分)已知ab,下列不等式中正确的是()ABa3b3Ca+3b+3D3a3b3(3分)当x2时,下列分式的值为0的是()ABCD4(3分)下列因式分解正确的是()Ax24(x+4)(x4)Bx2+2x+1x(x+2)+1C2x+42(x+2)D3mx6my3m(x6y)5(3分)菱形具有而一般平行四边形不具有的性质是()A两组对

2、边分别相等B两条对角线相等C四个内角都是直角D每一条对角线平分一组对角6(3分)在平面直角坐标系中,若直线y2x+k经过第一、二、三象限,则k的取值范围是()Ak0Bk0Ck0Dk07(3分)如图,将ABC绕点A按顺时针方向旋转120得到ADE,点B的对应点是点E,点C的对应点是点D,若BAC35,则CAE的度数为()A90B75C65D858(3分)如图,在ABC中,ABAC,DE是AC的垂直平分线,BCD的周长为24,BC10,则AC等于()A11B12C14D169(3分)某农场开挖一条长480米的渠道,开工后每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x米,那么求x时

3、所列方程正确的是()A4B20C4D410(3分)如图,在ABC中,D、E分别是AB、AC的中点,BC12,F是DE上一点,连接AF、CF,DE3DF,若AFC90,则AC的长度为()A4B5C8D10二、填空题(本大题共4个小题,每小题4分,共16分)11(4分)一个多边形的内角和是1080,这个多边形的边数是 12(4分)若a+b5,ab3,则a2b2 13(4分)如图,直线yx+m与ynx+4n(n0)的交点的横坐标为2,则关于x的不等式x+mnx+4n的解集是 14(4分)如图,在平行四边形ABCD中,AB6,BC8,以C为圆心,适当长为半径画弧分别交BC,CD于M,N两点,分别以M,

4、N为圆心,以大于MN的长为半径画弧,两弧在BCD的内部交于点P,连接CP并延长交AD于E,交BA的延长线于F,则AF的值等于 三、解答题(本大题共6个小题,共54分解答应写出必要的文字说明、证明过程或演算步骤)15(6分)(1)分解因式:9a2(xy)4b2(xy)(2)计算:16(6分)解不等式组,把解集在所给数轴上表示出来,并写出其整数解17(8分)如图,在平面直角坐标系中,已知点A(2,3),B(3,1),C(1,2)且A1B1C1与ABC关于原点O成中心对称(1)画出A1B1C1,并写出A1的坐标;(2)P(a,b)是ABC的边AC上一点,ABC经平移后点P的对应点P(a+3,b+1)

5、,请画出平移后的A2B2C218(8分)如图,在ABCD中,E、F分别为边ABCD的中点,BD是对角线,过A点作AGDB交CB的延长线于点G(1)求证:DEBF;(2)若G90,求证:四边形DEBF是菱形19(10分)某公司计划购买A,B两种型号的机器人搬运材料已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?20(10分)有两张完全重

6、合的矩形纸片,将其中一张绕点A顺时针旋转90后得到矩形AMEF(如图1),连接BD,MF,若BD4cm,ADB30(1)试探究线段BD与线段MF的数量关系和位置关系,并说明理由;(2)把BCD与MEF剪去,将ABD绕点A顺时针旋转得AB1D1,边AD1交FM于点K(如图2),设旋转角为(090),当AFK为等腰三角形时,求的度数(3)若将AFM沿AB方向平移得到A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NPAB时,求平移的距离三、填空题(本大题共5个小题,每小题4分,共20分)21(4分)已知x+5,则代数式(x3)24(x3)+4的值是 22(4分)有6张正面

7、分别标有数字2,0,2,4,6,8的不透明卡片,它们除数不同外其余全部相同,先将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,则使关于x不等式组有实数解的概率为 23(4分)若分式方程有正数解,则k 24(4分)如图,在平面直角坐标系中放置一菱形OABC,已知ABC60,OA1现将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60,连续翻转2024次,点B的落点依次为B1,B2,B3,B4,则B2024的坐标为 25(4分)如图,在平行四边形ABCD中,点E为AD边的中点,将ABE沿BE翻折,得到FBE,连接DF并延长交BC于点G,若BEAD3,平行四边形ABCD的面积为6,则FG

8、 四、解答题(本大题共3个小题,共30分,解答应写出必要的文字说明、证明过程或演步骤)26(8分)某商场购进A、B两种服装共100件,已知购进这100件服装的费用不得超过7500元,且其中A种服装不少于65件,它们的进价和售价如表服装进价(元/件)售价(元/件)A80120B6090其中购进A种服装为x件,如果购进的A、B两种服装全部销售完,根据表中信息,解答下列问题(1)求获取总利润y元与购进A种服装x件的函数关系式,并写出x的取值范围;(2)该商场对A种服装以每件优惠a(0a20)元的售价进行优惠促销活动,B种服装售价不变,那么该商场应如何调整A、B服装的进货量,才能使总利润y最大?27(

9、10分)(1)【问题发现】如图1,在RtABC中,ABAC4,BAC90,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,则线段BE与AF的数量关系为 ;(2)【拓展研究】在(1)的条件下,如果正方形CDEF绕点C旋转,当点B,E,F三点共线时,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;(3)【问题发现】当正方形CDEF旋转到B,E,F三点共线时,求线段AF的长28(12分)如图1,直线yx+6与y轴交于点A,与x轴交于点D,直线AB交x轴于点B,AOB沿直线AB折叠,点O恰好落在直线AD上的点C处(1)求OB的长;(2)如图2,F,

10、G是直线AB上的两点,若DFG是以FG为斜边的等腰直角三角形,求点F的坐标;(3)如图3,点P是直线AB上一点,点Q是直线AD上一点,且P,Q均在第四象限,点E是x轴上一点,若四边形PQDE为菱形,求点E的坐标2018-2019学年四川省成都市天府新区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分在每小题给出的四个选项中只有一项是符合题目要求的)1(3分)下列图形中,是轴对称图形,不是中心对称图形的是()A正方形B正三角形C正六边形D禁止标志【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解【解答】解:A、图形是中心对称轴

11、图形,也是轴对称图形,此选项错误;B、图形不是中心对称轴图形,是轴对称图形,此选项正确;C、图形是中心对称轴图形,也是轴对称图形,此选项错误;D、图形是中心对称轴图形,也是轴对称图形,此选项错误;故选:B【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合2(3分)已知ab,下列不等式中正确的是()ABa3b3Ca+3b+3D3a3b【分析】根据不等式的性质逐个判断即可【解答】解:A、ab,故本选项不符合题意;B、ab,a3b3,故本选项符合题意;C、ab,a+3b+3,故本选项不

12、符合题意;D、ab,3a3b,故本选项不符合题意;故选:B【点评】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键3(3分)当x2时,下列分式的值为0的是()ABCD【分析】根据分式的值为零的条件即可求出答案【解答】解:(A)当x2时,原分式无意义,故本选项错误;(B)当x2时,原式20,故本选项错误;(C)当x2时,原分式无意义,故本选项错误;(D)当x2时,原式0,故本选项正确;故选:D【点评】本题考查分式的值为0的条件:分子等于零且分母不等于零,解题的关键是熟练运用分式的运算,本题属于基础题型4(3分)下列因式分解正确的是()Ax24(x+4)(x4)Bx2+2x+1x(x

13、+2)+1C2x+42(x+2)D3mx6my3m(x6y)【分析】各项分解得到结果,即可作出判断【解答】解:A、原式(x+2)(x2),错误;B、原式(x+1)2,错误;C、原式2(x+2),正确;D、原式3m(x2y),错误,故选:C【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键5(3分)菱形具有而一般平行四边形不具有的性质是()A两组对边分别相等B两条对角线相等C四个内角都是直角D每一条对角线平分一组对角【分析】由菱形具有的性质是:对边相等,对角相等,对角线互相垂直且平分;平行四边形具有的性质是:对边相等,对角相等,对角线互相平分;即可求得答案【解答

14、】解:菱形具有的性质是:对边相等,对角相等,对角线互相垂直且平分,每一条对角线平分一组对角,;平行四边形具有的性质是:对边相等,对角相等,对角线互相平分;菱形具有而一般平行四边形不具有的性质是:每一条对角线平分一组对角故选:D【点评】此题考查了菱形的性质以及平行四边形的性质注意熟记定理是解此题的关键6(3分)在平面直角坐标系中,若直线y2x+k经过第一、二、三象限,则k的取值范围是()Ak0Bk0Ck0Dk0【分析】根据一次函数的性质求解【解答】解:一次函数y2x+k的图象经过第一、二、三象限,那么k0故选:A【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系解答本题注意理解:直

15、线ykx+b所在的位置与k、b的符号有直接的关系k0时,直线必经过一、三象限;k0时,直线必经过二、四象限;b0时,直线与y轴正半轴相交;b0时,直线过原点;b0时,直线与y轴负半轴相交7(3分)如图,将ABC绕点A按顺时针方向旋转120得到ADE,点B的对应点是点E,点C的对应点是点D,若BAC35,则CAE的度数为()A90B75C65D85【分析】由题意可得BAE是旋转角为120且BAC35,可求CAE的度数【解答】解:将ABC绕点A按顺时针方向旋转120得到ADEBAE120且BAC35CAE85故选:D【点评】本题考查了旋转的性质,关键是熟练运用旋转的性质解决问题8(3分)如图,在A

16、BC中,ABAC,DE是AC的垂直平分线,BCD的周长为24,BC10,则AC等于()A11B12C14D16【分析】根据线段垂直平分线的性质可得ADCD,再根据BCD的周长为24可得AB+BC24,进而得到AC的长【解答】解:DE是AC的垂直平分线,ADCD,BCD的周长为24,BD+CD+BC24,AB+BC24,BC10,ACAB241014故选:C【点评】此题主要考查了等腰三角形的性质,线段垂直平分线的性质,关键是掌握垂直平分线上任意一点,到线段两端点的距离相等9(3分)某农场开挖一条长480米的渠道,开工后每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x米,那么求x时

17、所列方程正确的是()A4B20C4D4【分析】本题的关键描述语是:“提前4天完成任务”;等量关系为:原计划用时实际用时4【解答】解:设原计划每天挖x米,那么原计划用时为:,实际用时为:根据题意,得:4,故选:D【点评】本题考查了由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键10(3分)如图,在ABC中,D、E分别是AB、AC的中点,BC12,F是DE上一点,连接AF、CF,DE3DF,若AFC90,则AC的长度为()A4B5C8D10【分析】根据三角形中位线定理求出DE,根据题意求出EF,根据直角三角形的性质计算即可【解答】解:D、E分别是AB、AC的中

18、点,DE是ABC的中位线,DEBC6,DE3DF,EF4,AFC90,E是AC的中点,AC2EF8,故选:C【点评】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键二、填空题(本大题共4个小题,每小题4分,共16分)11(4分)一个多边形的内角和是1080,这个多边形的边数是8【分析】根据多边形内角和定理:(n2)180 (n3)可得方程180(x2)1080,再解方程即可【解答】解:设多边形边数有x条,由题意得:180(x2)1080,解得:x8,故答案为:8【点评】此题主要考查了多边形内角和定理,关键是熟练掌握计算公式:(n2)

19、180 (n3)12(4分)若a+b5,ab3,则a2b215【分析】先根据平方差公式分解因式,再代入求出即可【解答】解:a+b5,ab3,a2b2(a+b)(ab)5315,故答案为:15【点评】本题考查了平方差公式,能够正确分解因式是解此题的关键13(4分)如图,直线yx+m与ynx+4n(n0)的交点的横坐标为2,则关于x的不等式x+mnx+4n的解集是x2【分析】利用给出函数图象写出直线yx+m在直线ynx+4n(n0)上方所对应的自变量x的范围即可【解答】解:当x2时,x+mnx+4n,关于x的不等式x+mnx+4n的解集为x2故答案为:x2【点评】本题考查了一次函数与一元一次不等式

20、:从函数的角度看,就是寻求使一次函数ykx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线ykx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合14(4分)如图,在平行四边形ABCD中,AB6,BC8,以C为圆心,适当长为半径画弧分别交BC,CD于M,N两点,分别以M,N为圆心,以大于MN的长为半径画弧,两弧在BCD的内部交于点P,连接CP并延长交AD于E,交BA的延长线于F,则AF的值等于2【分析】先根据角平分线的性质得出BCEDCE,再由平行四边形的性质得出ABCD,ADBC,故可得出DCEF,BCEAEF,故可得出BFBC8,进而可得出结论【解答】解:

21、由题意可知,CF是BCD的平分线,BCEDCE四边形ABCD是平行四边形,ABCD,ADBC,DCEF,BCEAEF,BFBC8,AB6,AF862故答案为:2【点评】本题考查的是作图基本作图,熟知角平分线的作法以及平行四边形的性质是解答此题的关键三、解答题(本大题共6个小题,共54分解答应写出必要的文字说明、证明过程或演算步骤)15(6分)(1)分解因式:9a2(xy)4b2(xy)(2)计算:【分析】(1)先提取公因式xy,再利用平方差公式变形可得;(2)先计算括号内分式的减法,再将除法转化为乘法、同时因式分解,最后约分即可得【解答】解:(1)原式(xy)(9a24b2)(xy)(3a+2

22、b)(3a2b);(2)原式x+1【点评】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则及平方差公式16(6分)解不等式组,把解集在所给数轴上表示出来,并写出其整数解【分析】分别解两个一元一次不等式,找出其公共部分,就是不等式组的解集,再将解集在数字上表示出来,并找出其整数解即可【解答】解:解不等式12(x1)5得:x1,解不等式得:x3,不等式组的解集为:1x3,不等式组的解集在数轴上表示如下:符合不等式组解集的整数解为:1,0,1,2【点评】本题考查一元一次不等式组的整数解,在数轴上表示不等式的解集,解一元一次不等式组,正确掌握解一元一次不等式组的方法是解题的关键

23、17(8分)如图,在平面直角坐标系中,已知点A(2,3),B(3,1),C(1,2)且A1B1C1与ABC关于原点O成中心对称(1)画出A1B1C1,并写出A1的坐标;(2)P(a,b)是ABC的边AC上一点,ABC经平移后点P的对应点P(a+3,b+1),请画出平移后的A2B2C2【分析】(1)依据A1B1C1与ABC关于原点O成中心对称,即可得到,A1B1C1(2)依据P(a,b)是ABC的边AC上一点,ABC经平移后点P的对应点P(a+3,b+1),即可得到平移的方向和距离,进而得出平移后的A2B2C2【解答】解:(1)如图所示,A1B1C1即为所求,A1的坐标为(2,3);(2)如图所

24、示,A2B2C2即为所求【点评】本题主要考查了利用平移变换以及旋转变换进行作图,平移作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形18(8分)如图,在ABCD中,E、F分别为边ABCD的中点,BD是对角线,过A点作AGDB交CB的延长线于点G(1)求证:DEBF;(2)若G90,求证:四边形DEBF是菱形【分析】(1)根据平行四边形的性质得到DFBE,ABCD,根据平行四边形的判定定理证明四边形DEBF是平行四边形,根据平行四边形的性质证明结论;(2)根据矩形的判定定理得到四边形AGBD是矩形,根据直角三角形的性质得到EDE

25、B,证明结论【解答】(1)证明:四边形ABCD是平行四边形,ABCD,ABCD,E、F分别为边AB、CD的中点,DFBE,又ABCD,四边形DEBF是平行四边形,DEBF;(2)AGDB,ADCG,四边形AGBD是平行四边形,G90,平行四边形AGBD是矩形,ADB90,又E为边AB的中点,EDEB,又四边形DEBF是平行四边形,四边形DEBF是菱形【点评】本题考查的是平行四边形的判定和性质、菱形的判定和性质,注意:平行四边形的对边平行且相等,题目是一道比较好的题目,难度适中19(10分)某公司计划购买A,B两种型号的机器人搬运材料已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器

26、人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?【分析】(1)设B型机器人每小时搬运x千克材料,则A型机器人每小时搬运(x+30)千克材料,根据A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同建立方程求出其解就可以得出结论(2)设购进A型机器人a台,根据每小时搬运材料不得少于2800kg列出不等式并解答【解答】解:(1)设B型机器人每小时搬运x千克材料,则A型

27、机器人每小时搬运(x+30)千克材料,根据题意,得,解得x120经检验,x120是所列方程的解当x120时,x+30150答:A型机器人每小时搬运150千克材料,B型机器人每小时搬运120千克材料;(2)设购进A型机器人a台,则购进B型机器人(20a)台,根据题意,得150a+120(20a)2800,解得aa是整数,a14答:至少购进A型机器人14台【点评】本题考查了分式方程的运用,一元一次不等式的运用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的数量关系20(10分)有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90后得到矩形AMEF(如图1),连接BD,MF,若BD

28、4cm,ADB30(1)试探究线段BD与线段MF的数量关系和位置关系,并说明理由;(2)把BCD与MEF剪去,将ABD绕点A顺时针旋转得AB1D1,边AD1交FM于点K(如图2),设旋转角为(090),当AFK为等腰三角形时,求的度数(3)若将AFM沿AB方向平移得到A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NPAB时,求平移的距离【分析】(1)有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90后得到矩形AMEF(如图1),得BDMF,BADMAF,推出BDMF,ADBAFM30,进而可得DNM的大小(2)分两种情形讨论当AKFK时,当AFFK时,根据旋转

29、的性质得出结论(3)求平移的距离是A2A的长度在矩形PNA2A中,A2APN,只要求出PN的长度就行用DPNDAB得出对应线段成比例,即可得到A2A的大小【解答】解:(1)结论:BDMF,BDMF理由:如图1,延长FM交BD于点N,由题意得:BADMAFBDMF,ADBAFM又DMNAMF,ADB+DMNAFM+AMF90,DNM90,BDMF(2)如图2,当AKFK时,KAFF30,则BAB1180B1AD1KAF180903060,即60;当AFFK时,FAK(180F)75,BAB190FAK15,即15;综上所述,的度数为60或15;(3)如图3,由题意得矩形PNA2A设A2Ax,则P

30、Nx,在RtA2M2F2中,F2M2FM4,FADB30,A2M22,A2F22,AF22xPAF290,PF2A30,APAF2tan302x,PDADAP22+xNPAB,DNPBDD,DPNDAB,解得x3,即A2A3,平移的距离是(3)cm【点评】本题属于四边形综合题,主要考查了旋转的性质,相似三角形的判定与性质,勾股定理的运用,等腰三角形的性质的运用运用在利用相似三角形的性质时注意使用相等线段的代换以及注意分类思想的运用三、填空题(本大题共5个小题,每小题4分,共20分)21(4分)已知x+5,则代数式(x3)24(x3)+4的值是5【分析】将x+5代入原式(x32)2(x5)2计算

31、可得【解答】解:当x+5时,原式(x32)2(x5)2(+55)2()25,故答案为:5【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则及完全平方公式22(4分)有6张正面分别标有数字2,0,2,4,6,8的不透明卡片,它们除数不同外其余全部相同,先将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,则使关于x不等式组有实数解的概率为【分析】分别解两个不等式得到x2和x,若不等式组有实数解,则2,解得a1,然后根据概率公式求解【解答】解:,解得x2,解得x,不等式组有实数解,则2,解得a1,所以任取一张,将该卡片上的数字记为a,则使关于x不等

32、式组有实数解的概率,故答案为:【点评】本题考查了概率公式:随机事件A的概率P(A)事件A可能出现的结果数除以所有可能出现的结果数也考查了解一元一次不等式组23(4分)若分式方程有正数解,则k6且k1【分析】根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得不等式,解不等式,可得答案,并注意分母不分零【解答】解:方程两边都乘以(x5),得x6k,解得x6k,分式方程有正数解,x6k0,且6k5解得:k6,且k1,k的取值范围是k6且k1故答案为:6且k1【点评】本题主要考查了解分式方程、分式方程的解、一元一次不等式等知识,能根据已知和方程的解得出k的范围是解此题的关键24(4分

33、)如图,在平面直角坐标系中放置一菱形OABC,已知ABC60,OA1现将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60,连续翻转2024次,点B的落点依次为B1,B2,B3,B4,则B2024的坐标为(1350,0)【分析】连接AC,根据条件可以求出AC,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移4由于20243367+2,因此点B2向右平移1348(即3374)即可到达点B2024,根据点B2的坐标就可求出点B2024的坐标【解答】解:连接AC,如图所示四边形OABC是菱形,OAABBCOCABC60,ABC是等边三角形ACABACOAOA1,AC1画

34、出第5次、第6次、第7次翻转后的图形,如图所示由图可知:每翻转6次,图形向右平移420243376+2,点B2向右平移1348(即3374)到点B2024B2的坐标为(2,0),B2024的坐标为(2+1348,0),B2024的坐标为(1350,0)故答案为:(1350,0);【点评】本题考查了翻折变换(折叠问题),菱形的性质、等边三角形的判定与性质等知识,考查了操作、探究、发现规律的能力发现“每翻转6次,图形向右平移4”是解决本题的关键25(4分)如图,在平行四边形ABCD中,点E为AD边的中点,将ABE沿BE翻折,得到FBE,连接DF并延长交BC于点G,若BEAD3,平行四边形ABCD的

35、面积为6,则FG3【分析】根据折的性质得到AEEF,AEBFEB,由平角的定义得到AEB(180DEF),由三角形的内角和得到EDF(180DEF),根据平行四边形的判定定理即可得到结论;由平行四边形的性质得到DEBG,DGBE10,SABES平行四边形ABCD,连接AF交BE于H,于是得到AHBE,AHHF,根据勾股定理即可得到结论【解答】解:把ABE沿BE翻折,得到FBE,AEEF,AEBFEB,AEB(180DEF),E为AD边的中点,AEDE,DEEF,EDFEFD,EDF(180DEF),AEBEDF,BEDG,四边形ABCD是平行四边形,DEBG,四边形BEDG为平行四边形;DEB

36、G,DGBE3,四边形ABCD是平行四边形,AEDE,ABCD的面积等于6,SABES平行四边形ABCD,连接AF交BE于H,则AHBE,AHHF,BE3,AH1,AF2,BEDG,AFDG,DF,FGDGFD3,故答案为:3【点评】本题考查了翻折变换(折叠问题),平行四边形的判定和性质,勾股定理,熟练正确折叠的性质是解题的关键四、解答题(本大题共3个小题,共30分,解答应写出必要的文字说明、证明过程或演步骤)26(8分)某商场购进A、B两种服装共100件,已知购进这100件服装的费用不得超过7500元,且其中A种服装不少于65件,它们的进价和售价如表服装进价(元/件)售价(元/件)A8012

37、0B6090其中购进A种服装为x件,如果购进的A、B两种服装全部销售完,根据表中信息,解答下列问题(1)求获取总利润y元与购进A种服装x件的函数关系式,并写出x的取值范围;(2)该商场对A种服装以每件优惠a(0a20)元的售价进行优惠促销活动,B种服装售价不变,那么该商场应如何调整A、B服装的进货量,才能使总利润y最大?【分析】(1)根据题意列出函数解析式解答即可;(2)找出利润关于购进A种服装a之间的关系式,分a的情况讨论【解答】解:(1)80x+60(100x)7500,解得:x75,y40x+30(100x)(65x75);(2)y(40a)x+30(100x)(10a)x+3000,方

38、案1:当0a10时,10a0,y随x的增大而增大,所以当x75时,y有最大值,则购进A种服装75件,B种服装25件;方案2:当a10时,所有方案获利相同,所以按哪种方案进货都可以;方案3:当10a20时,10a0,y随x的增大而减小,所以当x65时,y有最大值,则购进A种服装65件,B种服装35件【点评】本题考查了一次函数的应用,解题的关键是:(1)根据题意列出一次函数解析式;(2)找出利润关于购进A种服装x的关系式,由函数的性质分a的情况讨论本题属于中档题,(1)难度不大,(2)需要分a的情况讨论27(10分)(1)【问题发现】如图1,在RtABC中,ABAC4,BAC90,点D为BC的中点

39、,以CD为一边作正方形CDEF,点E恰好与点A重合,则线段BE与AF的数量关系为BEAF;(2)【拓展研究】在(1)的条件下,如果正方形CDEF绕点C旋转,当点B,E,F三点共线时,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;(3)【问题发现】当正方形CDEF旋转到B,E,F三点共线时,求线段AF的长【分析】(1)先利用等腰直角三角形的性质得出AD,再得出BEAB4,即可得出结论;(2)先利用三角函数得出,同理得出,夹角相等即可得出ACFBCE,进而得出结论;(3)分两种情况计算,当点E在线段BF上时,如图2,先利用勾股定理求出EFCFAD2,BF2,即可

40、得出BE22,借助(2)得出的结论,当点E在线段BF的延长线上,同前一种情况一样即可得出结论【解答】解:(1)在RtABC中,ABAC4,根据勾股定理得,BCAB4,点D为BC的中点,ADBC2,四边形CDEF是正方形,AFEFAD2,BEAB4,BEAF,故答案为BEAF;(2)无变化;如图2,在RtABC中,ABAC4,ABCACB45,sinABC,在正方形CDEF中,FECFED45,在RtCEF中,sinFEC,FCEACB45,FCEACEACBACE,FCAECB,ACFBCE,BEAF,线段BE与AF的数量关系无变化;(3)当点E在线段AF上时,如图2,由(1)知,CFEFCD

41、2,在RtBCF中,CF2,BC4,根据勾股定理得,BF2,BEBFEF22,由(2)知,BEAF,AF22,当点E在线段BF的延长线上时,如图3,在RtABC中,ABAC4,ABCACB45,sinABC,在正方形CDEF中,FECFED45,在RtCEF中,sinFEC,FCEACB45,FCB+ACBFCB+FCE,FCAECB,ACFBCE,BEAF,由(1)知,CFEFCD2,在RtBCF中,CF2,BC4,根据勾股定理得,BF2,BEBF+EF2+2,由(2)知,BEAF,AF2+2即:当正方形CDEF旋转到B,E,F三点共线时候,线段AF的长为22或2+2【点评】此题是四边形综合题,主要考查了等腰直角三角形的性质,正方形的性质,旋转的性质,相似三角形的判定和性质,解(2)(3)的关键是判断出ACFBCE第三问要分情况讨论28(12分)如图1,直线yx+6与y轴交于点A,与x轴交于点D,直线AB交x轴于点B,AOB