ImageVerifierCode 换一换
格式:DOC , 页数:20 ,大小:309.50KB ,
资源ID:122406      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-122406.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2018-2019学年云南省玉溪一中高二(上)期中数学试卷(文科)含详细解答)为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2018-2019学年云南省玉溪一中高二(上)期中数学试卷(文科)含详细解答

1、2018-2019学年云南省玉溪一中高二(上)期中数学试卷(文科)一、选择题:本题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1(5分)已知集合Mx|2x1,Nx|2x2,则RMN()A2,1B0,2C(0,2D2,22(5分)“x2”是“x2+x60”的()A必要不充分条件B充分不必要条件C充要条件D既不充分也不必要条件3(5分)已知alog20.3,b20.3,c0.32,则a,b,c三者的大小关系是()AbcaBbacCabcDcba4(5分)2路公共汽车每5分钟发车一次,小明到乘车点的时刻是随机的,则他候车时间不超过两分钟的概率是()ABCD

2、5(5分)已知高一(1)班有48名学生,班主任将学生随机编号为01,02,48,用系统抽样方法,从中抽8人,若05号被抽到了,则下列编号的学生被抽到的是()A16B22C29D336(5分)直线2x+3y90与直线6x+my+120平行,则两直线间的距离为()ABC21D137(5分)某几何体的三视图如图所示,图中每一个小方格均为正方形,且边长为1,则该几何体的体积为()A8BCD128(5分)在ABC中,则()ABCD9(5分)执行如图所示的程序框图,若输出k的值为8,则判断框内可填入的条件是()AsBsCsDs10(5分)已知a,bR,且a3b+60,则的最小值为()AB4CD311(5分

3、)已知四棱锥PABCD的顶点都在球O的球面上,底面ABCD是边长为2的正方形,且PA面ABCD,若四棱锥的体积为,则该球的体积为()A64B8C24D612(5分)定义在R上的奇函数f(x)满足:f(x),则函数g(x)f(x)a(0a1)的所有零点之和为()A2a1Blog2(a1)Clog2(a+1)D2a1二、填空题:本题共4个小题,每小题5分,共20分.13(5分)在等比数列an中,已知a2a4a68,则a3a5   14(5分)已知变量x,y满足约束条件,则目标函数z2xy的最大值是   15(5分)将函数f(x)sin(2x)的图象向左平移个长度单位,得到函数g

4、(x)的图象,则函数g(x)的单调递减区间是   16(5分)由直线x+2y70上一点P引圆x2+y22x+4y+20的一条切线,切点为A,则|PA|的最小值为   二解答题:共6小题,共70分.解答题应写出必要的文字说明、证明过程及演算步骤.17(10分)已知ABC的内角A,B,C的对边分别为a,b,c,2acosCbcosC+ccosB(1)求角C的大小;(2)若c,a2+b210,求ABC的面积18(12分)对某校高一年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数根据此数据作出了频数与频率的统计表和频率分布直方图如下:分组

5、频数频率10,15)100.2515,20)25n20,25)mp25,30)20.05合计M1(1)求出表中M,p及图中a的值;(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间15,20)内的人数;(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多1人参加社区服务次数在区间20,25)内的概率19(12分)在直三棱柱ABCA1B1C1中,AD平面A1BC,其垂足D在直线A1B上(1)求证:BCA1B;(2)若AD,P为AC的中点,求P到平面A1BC的距离20(12分)设数列an的前n项和Sn满足Sn2ana1,且a1,a2+1,a3成等差数

6、列(1)求数列an的通项公式;(2)记数列的前n项和为Tn,求证:Tn121(12分)已知圆C经过原点O(0,0)且与直线y2x8相切于点P(4,0)(1)求圆C的方程;(2)已知直线l经过点(4,5),且与圆C相交于M,N两点,若|MN|2,求出直线l的方程22(12分)已知f(x)logax,g(x)2loga(2x+t2)(a0,a1,tR)(1)当t4,x1,2,且F(x)g(x)f(x)有最小值2时,求a的值;(2)当0a1,x1,2时,有f(x)g(x)恒成立,求实数t的取值范围2018-2019学年云南省玉溪一中高二(上)期中数学试卷(文科)参考答案与试题解析一、选择题:本题共1

7、2个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1(5分)已知集合Mx|2x1,Nx|2x2,则RMN()A2,1B0,2C(0,2D2,2【分析】先分别求出集合M,N,再求出RM,由此能求出RMN【解答】解:集合Mx|2x1x|x0,Nx|2x2,RMx|x0,RMNx|0x2(0,2故选:C【点评】本题考查补集、交集的求法,考查补集、交集性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题2(5分)“x2”是“x2+x60”的()A必要不充分条件B充分不必要条件C充要条件D既不充分也不必要条件【分析】解不等式,根据小范围是大范围的充分不必要条件

8、,得到答案【解答】解:“x2+x60”“x3,或x2”故x2”是“x2+x60”的充分不必要条件故选:B【点评】本题考查的知识点是充要条件,难度不大,属于基础题3(5分)已知alog20.3,b20.3,c0.32,则a,b,c三者的大小关系是()AbcaBbacCabcDcba【分析】由指数函数与对数函数的性质可得a0,b1,0c1,则答案可求【解答】解:alog20.30,b20.3201,0c0.320.301,bca故选:A【点评】本题考查对数值的大小比较,考查指数函数与对数函数的单调性,是基础题4(5分)2路公共汽车每5分钟发车一次,小明到乘车点的时刻是随机的,则他候车时间不超过两分

9、钟的概率是()ABCD【分析】根据2路公共汽车每5分钟发车一次,得出两车间隔时间长度,再求出小明候车时间不超过2分钟的时间长度,利用几何概型公式计算即可【解答】解:2路公共汽车每5分钟发车一次,小明到乘车点的时刻是随机的,当小明在上一辆车开走后3分钟内到达,候车时间会超过2分钟,小明候车时间不超过2分钟的概率为P故选:A【点评】本题考查了几何概型的概率计算问题,是基础题5(5分)已知高一(1)班有48名学生,班主任将学生随机编号为01,02,48,用系统抽样方法,从中抽8人,若05号被抽到了,则下列编号的学生被抽到的是()A16B22C29D33【分析】根据系统抽样的定义求出样本间隔即可【解答

10、】解:样本间隔为48186,则抽到的号码为5+6(k1)6k1,当k2时,号码为11,当k3时,号码为17,当k4时,号码为23,当k5时,号码为29,故选:C【点评】本题主要考查系统抽样的定义和方法,属于简单题6(5分)直线2x+3y90与直线6x+my+120平行,则两直线间的距离为()ABC21D13【分析】利用两条直线平行的性质求得m的值,再利用两条平行直线间的距离公式求得两直线间的距离【解答】解:直线2x+3y90与直线6x+my+120平行,m9,故平行直线即6x+9y270与直线6x+9y+120,它们之间的距离为,故选:B【点评】本题主要考查两条直线平行的性质,两条平行直线间的

11、距离公式,属于基础题7(5分)某几何体的三视图如图所示,图中每一个小方格均为正方形,且边长为1,则该几何体的体积为()A8BCD12【分析】判断几何体的形状,画出直观图,利用三视图的数据求解即可【解答】解:由题意可知几何体是放倒的半个圆柱与半个圆锥的组合体,如图:圆锥,圆锥的底面半径为2,高为4,该几何体的体积为:故选:B【点评】本题考查三视图求解几何体的体积,判断几何体的形状是解题的关键考查空间想象能力以及计算能力8(5分)在ABC中,则()ABCD【分析】由已知可得:点M是靠近点B的三等分点,点N是AC的中点故,进而得到答案【解答】解:由已知,可得点M是靠近点B的三等分点,又,故点N是AC

12、的中点,故选:C【点评】本题考查的知识点是平面向量的基本定量,向量的线性运算,难度中档9(5分)执行如图所示的程序框图,若输出k的值为8,则判断框内可填入的条件是()AsBsCsDs【分析】模拟执行程序框图,依次写出每次循环得到的k,S的值,当S时,退出循环,输出k的值为8,故判断框图可填入的条件是S【解答】解:模拟执行程序框图,k的值依次为0,2,4,6,8,因此S+(此时k6),因此可填:S故选:C【点评】本题考查了当型循环结构的程序框图,根据框图的流程判断程序运行的S值是解题的关键,属于基础题10(5分)已知a,bR,且a3b+60,则的最小值为()AB4CD3【分析】直接利用代数式的恒

13、等变换和利用均值不等式的应用求出结果【解答】解:已知a,bR,且a3b+60,所以:a3b6,则22故选:A【点评】本题考查的知识要点:代数式的恒等变换,均值不等式的应用,主要考查学生的运算能力和转化能力,属于基础题型11(5分)已知四棱锥PABCD的顶点都在球O的球面上,底面ABCD是边长为2的正方形,且PA面ABCD,若四棱锥的体积为,则该球的体积为()A64B8C24D6【分析】把四棱锥PABCD扩展为长方体,则长方体的对角线的长是外接球的直径,求出外接球的半径R,再计算外接球的体积【解答】解:由题意,四棱锥PABCD扩展为长方体,则长方体的对角线的长是外接球的直径,由四棱锥的体积为V四

14、棱锥PABCD22PA,解得PA4;2R2,解得R;外接球的体积为V外接球8故选:B【点评】本题考查了四棱锥的结构特征与其外接球的应用问题,是基础题12(5分)定义在R上的奇函数f(x)满足:f(x),则函数g(x)f(x)a(0a1)的所有零点之和为()A2a1Blog2(a1)Clog2(a+1)D2a1【分析】画出函数的图象以及ya的图象交点的横坐标;作出两函数图象,考查交点个数,结合方程思想,及零点的对称性,根据奇函数,作出函数的图象,结合图象及其对称性,求出答案【解答】解:当x0时,f(x),即x0,1时,y2x1时,2x1a,解得xlog2(a+1);画出x0时,f(x)的图象,再

15、利用奇函数的对称性,画出x0时yf(x)的图象,如图所示; 则直线ya,与yf(x)的图象有5个交点,则f(x)a0方程共有五个实根,最左边两根之和为6,最右边两根之和为6,x1时,两个根之和为6,当x1时,两个根之和为6,另一个根为log2(a+1);函数g(x)f(x)a(0a1)的所有零点之和为:log2(a+1);故选:C【点评】本题考查函数与方程的应用,考查数形结合以及函数的零点的求法考查计算能力二、填空题:本题共4个小题,每小题5分,共20分.13(5分)在等比数列an中,已知a2a4a68,则a3a54【分析】根据题意,由等比数列的性质可得(a4)38,则a42,又由a3a5(a

16、4)2,即可得答案【解答】解:根据题意,在等比数列an中,已知a2a4a68,则(a4)38,则a42,则a3a5(a4)24;故答案为:4【点评】本题考查等比数列的性质,关键是掌握等比中项的性质,属于基础题14(5分)已知变量x,y满足约束条件,则目标函数z2xy的最大值是2【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案【解答】解:由变量x,y满足约束条件作出可行域如图,联立,解得B(1,0),化目标函数z2xy为y2xz,由图可知,当直线y2xz过点B时,直线在y轴上的截距最小,z有最大值为2102故答案为:2

17、【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题15(5分)将函数f(x)sin(2x)的图象向左平移个长度单位,得到函数g(x)的图象,则函数g(x)的单调递减区间是k,k+,kZ【分析】由题意利用函数yAsin(x+)的图象变换规律求得g(x)的解析式,再利用正弦函数的单调性求得函数g(x)的单调递减区间【解答】解:将函数f(x)sin(2x)sin2x 的图象向左平移个长度单位,得到函数g(x)sin(2x+) 的图象,令2k2x+2k+,求得kxk+,可得函数g(x)的减区间为k,k+,kZ,故答案为:k,k+,kZ【点评】本题主要考查函数yAsin(x+)的图象

18、变换规律,正弦函数的图象的单调性,属于基础题16(5分)由直线x+2y70上一点P引圆x2+y22x+4y+20的一条切线,切点为A,则|PA|的最小值为【分析】根据题意,求出圆x2+y22x+4y+20的圆心与半径,设圆心为M,分析可得当|PM|取得最小值时,|PA|取得最小值,由点到直线的距离公式分析可得|PM|的最小值,进而计算可得答案【解答】解:根据题意,圆x2+y22x+4y+20的标准方程为(x1)2+(y+2)23,圆心为(1,2),半径为,设圆心为M,则|PA|2|PM|2r2,分析可得:当|PM|取得最小值时,|PA|取得最小值,|PM|的最小值为圆心M到直线x+2y70的距

19、离,则有d2,则|PA|2|PM|2r220317;即|PA|的最小值为;故答案为:【点评】本题考查直线与圆的位置关系,注意分析|PA|取得最小值的条件二解答题:共6小题,共70分.解答题应写出必要的文字说明、证明过程及演算步骤.17(10分)已知ABC的内角A,B,C的对边分别为a,b,c,2acosCbcosC+ccosB(1)求角C的大小;(2)若c,a2+b210,求ABC的面积【分析】(1)由正弦定理得2sinAcosCsinBcosC+sinCcosB,由A+B+C,求出cosC,由此能求出C(2)由余弦定理得710ab,从而ab3,由此能求出ABC的面积【解答】解:(1)ABC的

20、内角A,B,C的对边分别为a,b,c,2acosCbcosC+ccosB,2sinAcosCsinBcosC+sinCcosB,A+B+C,2sinAcosCsin(B+C)sinA,cosC,0C,C(2)c,a2+b210,由余弦定理得:c2a2+b22abcosC,即710ab,解得ab3,ABC的面积S【点评】本题考查三角形角的大小的求法,考查三角形面积的求法,考查正弦定理、余弦定理、正弦函数加法定理、三角形面积公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题18(12分)对某校高一年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,

21、得到这M名学生参加社区服务的次数根据此数据作出了频数与频率的统计表和频率分布直方图如下:分组频数频率10,15)100.2515,20)25n20,25)mp25,30)20.05合计M1(1)求出表中M,p及图中a的值;(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间15,20)内的人数;(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多1人参加社区服务次数在区间20,25)内的概率【分析】(1)由频率,能求出表中M、p及图中a的值(2)由频数与频率的统计表和频率分布直方图能求出参加社区服务的平均次数(3)在样本中,处于20,25)内的人数

22、为3,可分别记为A,B,C,处于25,30内的人数为2,可分别记为a,b,由此利用列举法能求出至少1人参加社区服务次数在区间20,25)内的概率【解答】(1)由分组10,15)内的频数是10,频率是0.25知,所以M40因为频数之和为40,所以因为a是对应分组15,20)的频率与组距的商,所以(2)因为该校高三学生有360人,分组15,20)内的频率是0.625,所以估计该校高三学生参加社区服务的次数在此区间内的人数为3600.625225人(3)这个样本参加社区服务的次数不少于20次的学生共有3+25人设在区间20,25)内的人为a1,a2,a3,在区间25,30)内的人为b1,b2则任选2

23、人共有(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a2,a3),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)10种情况,(9分)而两人都在20,25)内共有(a1,a2),(a1,a3),(a2,a3)3种情况,至多一人参加社区服务次数在区间20,25)内的概率为【点评】本题考查频率分布表和频率分布直方图的应用,考查概率的求法,是中档题,解题时要认真审题,注意列举法的合理运用19(12分)在直三棱柱ABCA1B1C1中,AD平面A1BC,其垂足D在直线A1B上(1)求证:BCA1B;(2)若AD,P为AC的中点,求P到平面A1BC的距离【

24、分析】(1)推导出AA1平面ABC,A1ABC,ADBC,从而BC平面A1AB,进而BC平面A1AB,由此能证明BCA1B  (2)推导出AA1AB,ADA1B,BCAB,再由,能求出P到平面ABC距离【解答】证明:(1)三棱柱ABCA1B1C1为直三棱柱,AA1平面ABC,又BC平面ABC,A1ABC,AD平面A1BC,且BC平面A1BC,ADBC,又AA1平面A1AB,AD平面A1AB,A1AADA,BC平面A1AB,又A1B平面A1AB,BCA1B  解:(2)在直三棱柱ABCA1B1C1中,AA1AB,AD平面A1BC,其垂足D落在直线A1B上,ADA1B,在RtA

25、BD中,AD,ABBC2,sinABD,ABD60,在RtABA1中,AA1ABtan602,由(1)知BC平面A1AB,AB平面A1AB,BCAB,P为AC的中点,则P到平面ABC距离为d【点评】本题考查线线垂直的证明,考查点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题20(12分)设数列an的前n项和Sn满足Sn2ana1,且a1,a2+1,a3成等差数列(1)求数列an的通项公式;(2)记数列的前n项和为Tn,求证:Tn1【分析】(1)通过anSnSn12an2an1(n2),推出an2

26、an1(n2)然后求解通项公式(2)利用等比数列的前n项和,求出Tn+1利用函数的单调性转化求解即可【解答】解:(1)由已知Sn2ana1,有anSnSn12an2an1(n2),即an2an1(n2)从而a22a1,a32a24a1又因为a1,a2+1,a3成等差数列,即a1+a32(a2+1),所以a1+4a12(2a1+1),解得a12所以数列an是首项为2,公比为2的等比数列故an2n(6分)(2)证明:由(1)得,所以Tn+1由1在自然数集上递增,可得n1时取得最小值:,且11,则Tn1(12分)【点评】本题考查数列的通项公式的求法,数列求和,考查计算能力21(12分)已知圆C经过原

27、点O(0,0)且与直线y2x8相切于点P(4,0)(1)求圆C的方程;(2)已知直线l经过点(4,5),且与圆C相交于M,N两点,若|MN|2,求出直线l的方程【分析】(1)根据题意,设圆C的圆心C(m,n),半径为r,分析可得,解可得m、n、r的值,即可得答案;(2)根据题意,分2种情况讨论:当直线l的斜率存在时,设直线l的方程为y5k(x4),由直线与圆的位置关系分析可得k的值,当斜率不存在时,即直线l为x4,验证可得其符合题意,综合2种情况即可得答案【解答】解:(1)根据题意,设圆C的圆心C(m,n),半径为r,则有,解可得:m2,n1,r,所以圆C的方程为(x2)2+(y1)25;(2

28、)根据题意,分2种情况讨论:当直线l的斜率存在时,设直线l的方程为y5k(x4),即kxy+54k0;因为|MN|2,圆C的半径为,所以圆心到直线的距离d2;则2,解可得k,所以直线yx2;当斜率不存在时,即直线l:x4,符合题意;综合可得:综上直线l为yx2或x4【点评】本题考查直线与圆的位置关系以及圆的切线方程,(2)中注意分析直线的斜率是否存在22(12分)已知f(x)logax,g(x)2loga(2x+t2)(a0,a1,tR)(1)当t4,x1,2,且F(x)g(x)f(x)有最小值2时,求a的值;(2)当0a1,x1,2时,有f(x)g(x)恒成立,求实数t的取值范围【分析】(1

29、)当t4,x1,2,且F(x)g(x)f(x)有最小值2时,求a的值;(2)当0a1,x1,2时,有f(x)g(x)恒成立,求实数t的取值范围【解答】解:(1)当t4时,F(x)g(x)f(x)loga,x1,2,令h(x)4,x1,2,设ux+,x1,2作出u(x)的图象可知u(x)x+在1,2上为单调增函数h(x)在1,2上是单调增函数,h(x)min16,h(x)max18当0a1时,有F(x)minloga18,令loga182,求得a31(舍去);当a1时,有F(x)minloga16,令loga162,求得a41a4(2)当0a1,x1,2时,有f(x)g(x)恒成立,即当0a1,x1,2时,logax2loga(2x+t2)恒成立,由logax2loga(2x+t2)可得logaloga(2x+t2),2x+t2,t2x+2设u(x)2x+22()2+222+,x1,2,1,u(x)maxu(1)1实数t的取值范围为t1【点评】1、本题考查了利用函数的单调性求最值的知识,特别是与分类讨论相贯穿使此题更显综合;2、第二问考查了恒成立问题,要注意学习由已知向对数不等式转化的能力,由对数不等式向二次不等式转化的能力同时本题当中体现的游离参数思想亦值得学习