ImageVerifierCode 换一换
格式:DOCX , 页数:8 ,大小:848.29KB ,
资源ID:120160      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-120160.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020徐州市中考数学大一轮新素养突破提分专练(四)切线的证明(含答案))为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2020徐州市中考数学大一轮新素养突破提分专练(四)切线的证明(含答案)

1、提分专练(四)切线的证明|类型1|见切点,连半径,证垂直(1)利用等角代换判定1.2019镇江 如图T4-1,在ABC中,AB=AC,过AC延长线上的点O作ODAO,交BC的延长线于点D,以O为圆心,OD长为半径的圆过点B.(1)求证:直线AB与O相切;(2)若AB=5,O的半径为12,则tanBDO=.图T4-12.2019黄石 如图T4-2,AB是O的直径,点D在AB的延长线上,C,E是O上的两点,CE=CB,BCD=CAE,延长AE交BC的延长线于点F.(1)求证:CD是O的切线;(2)求证:CE=CF;(3)若BD=1,CD=2,求弦AC的长.图T4-2 (2)利用平行线判定3.201

2、9赤峰 如图T4-3,AB为O的直径,C,D是半圆AB的三等分点,过点C作AD延长线的垂线CE,垂足为E.(1)求证:CE是O的切线;(2)若O的半径为2,求图中阴影部分的面积.图T4-3(3)利用三角形全等或相似判定4.2019郴州 如图T4-4,已知AB是O的直径,CD与O相切于点D,且ADOC.(1)求证:BC是O的切线;(2)延长CO交O于点E.若CEB=30,O的半径为2,求BD的长.(结果保留)图T4-4|类型2|无切点,作垂直,证半径利用角平分线性质5.如图T4-5,在ABC中,AB=AC,AOBC于点O,OEAB于点E,以点O为圆心,OE为半径作半圆,交AO于点F.(1)求证:

3、AC是O的切线;(2)若点F是AO的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.图T4-5【参考答案】1.解:(1)证明:连接OB,如图所示.AB=AC,ABC=ACB.ACB=OCD,ABC=OCD.ODAO,COD=90,D+OCD=90.OB=OD,OBD=D,OBD+ABC=90,即ABO=90,ABOB,点B在O上,直线AB与O相切.(2)ABO=90,OA=AB2+OB2=52+122=13,AC=AB=5,OC=OA-AC=8,tanBDO=OCOD=812=23.故答案为:23.2.解:(1)证明

4、:连接OC,AB是O的直径,ACB=90,CAD+ABC=90,CE=CB,CAE=CAB,BCD=CAE,CAB=BCD,OB=OC,OBC=OCB,OCB+BCD=90,OCD=90,OC是O的半径,CD是O的切线.(2)证明:BAC=CAE,AC=AC,ACB=ACF=90,ABCAFC(ASA),CB=CF,又CB=CE,CE=CF.(3)BCD=CAD,ADC=CDB,ACDCBD,CDBD=ADCD=ACBC,21=AD2,AD=2,AB=AD-BD=2-1=1,设BC=a,则AC=2a,在RtABC中,由勾股定理可得:a2+(2a)2=12,解得:a=33(负值已舍),AC=63

5、.3.解:(1)证明:连接OC,点C,D为半圆O的三等分点,AD=CD=BC,BOC=EAB,OCAD.CEAD,CEOC,CE为O的切线.(2)连接OD,AD=CD=BC,COD=13180=60.CDAB,SACD=SCOD,图中阴影部分的面积=S扇形COD=6022360=23.4.解:(1)证明:连接OD,如图所示.ADOC,COD=ADO,COB=DAO,OA=OD,ADO=DAO,COD=COB.在COD和COB中,OD=OB,COD=COB,OC=OC,CODCOB,CDO=CBO,又CD与O相切于点D,CDO=90,CBO=90,BC是O的切线.(2)CEB=30,COB=60

6、,由(1)知,COD=COB,COD=60,DOB=COD+COB=120.O的半径为2,BD的长=1202180=43.5.解:(1)证明:作OHAC于H,如图,AB=AC,AOBC于点O,AO平分BAC,OEAB,OHAC,OH=OE,AC是O的切线.(2)点F是AO的中点,AO=2OF=6,OE=3,OAE=30,AOE=60,AE=3OE=33,图中阴影部分的面积=SAOE-S扇形EOF=12333-6032360=93-32.(3)3解析 作F点关于BC的对称点F,连接EF交BC于P,如图,PF=PF,PE+PF=PE+PF=EF,此时EP+FP最小.OF=OF=OE,F=OEF,AOE=F+OEF=60,F=30,F=EAF,EF=EA=33,即PE+PF最小值为33.在RtOPF中,OP=33OF=3,在RtABO中,OB=33OA=336=23,BP=23-3=3,即当PE+PF取最小值时,BP的长为3.