ImageVerifierCode 换一换
格式:DOCX , 页数:6 ,大小:208.01KB ,
资源ID:117108      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-117108.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(§1 数系的扩充与复数的引入(二)学案(含答案))为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

§1 数系的扩充与复数的引入(二)学案(含答案)

1、1数系的扩充与复数的引入(二)学习目标1.理解可以用复平面内的点或以原点为起点的向量来表示复数及它们之间的一一对应关系.2.掌握实轴、虚轴、模等概念.3.掌握用向量的模来表示复数的模的方法知识点一复平面思考实数可用数轴上的点来表示,类比一下,复数怎样来表示呢?答案任何一个复数zabi,都和一个有序实数对(a,b)一一对应,因此,复数集与平面直角坐标系中的点集之间可以一一对应梳理当用直角坐标平面内的点来表示复数时,我们称这个直角坐标平面为复平面,x轴称为实轴,y轴称为虚轴实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数知识点二复数的几何意义知识点三复数的模或绝对值设复数zabi在复平面内

2、对应的点是Z(a,b),点Z到原点的距离|OZ|叫作复数z的模或绝对值,记作|z|,显然,|z|.两个复数不全是实数不能比较大小,但可以比较它们模的大小1在复平面内,对应于实数的点都在实轴上()2在复平面内,虚轴上的点所对应的复数都是纯虚数()3若|z1|z2|,则z1z2.()类型一复数的模例1已知复数z1i,z2cos isin .(1)求|z1|及|z2|,并比较它们的大小;(2)设zC,点Z为z在复平面内所对应的点,则满足条件|z2|z|z1|的点Z构成了什么图形?考点复数的模的定义与应用题点利用定义求复数的模解(1)|z1|2,|z2|1.因为21,所以|z1|z2|.(2)由|z2

3、|z|z1|,得1|z|2.因为|z|1表示以O为圆心,1为半径的圆的外部及其边界上所有点,|z|2表示以O为圆心,2为半径的圆的内部及其边界上所有点,故符合题设条件的点构成了以O为圆心,分别以1和2为半径的两个圆所夹的圆环(包括边界)反思与感悟利用模的定义将复数模的条件转化为其实部、虚部满足的条件,是一种复数问题实数化思想跟踪训练1已知0a3,复数zai(i是虚数单位),则|z|的取值范围是()A(1,) B(1,)C(1,3) D(1,10)考点复数的模的定义与应用题点利用定义求复数的模答案A解析0a3,复数zai(i是虚数单位),则|z|(1,)类型二复数的几何意义例2实数x分别取什么值

4、时,复数z(x2x6)(x22x15)i对应的点Z在:(1)第三象限;(2)直线xy30上考点复数的几何意义题点复数与点的对应关系解因为x是实数,所以x2x6,x22x15也是实数(1)当实数x满足即当3x2时,点Z在第三象限(2)zx2x6(x22x15)i对应点Z(x2x6,x22x15),当实数x满足(x2x6)(x22x15)30,即当x2时,点Z在直线xy30上引申探究若本例中的条件不变,其对应的点在:(1)虚轴上;(2)第四象限解(1)当实数x满足x2x60,即当x3或2时,点Z在虚轴上(2)当实数x满足即当2x5时,点Z在第四象限反思与感悟按照复数和复平面内所有点所成的集合之间的

5、一一对应关系,每一个复数都对应着一个有序实数对,只要在复平面内找出这个有序实数对所表示的点,就可根据点的位置判断复数实部、虚部的取值跟踪训练2在复平面内,若复数z(m2m2)(m23m2)i(mR)的对应点在虚轴上和实轴负半轴上,分别求复数z.考点复数的几何意义题点复数与点的对应关系解若复数z的对应点在虚轴上,则m2m20,所以m1或m2,所以z6i或z0.若复数z的对应点在实轴负半轴上,则所以m1,所以z2.1当m1时,复数z(3m2)(m1)i(i为虚数单位)在复平面内对应的点位于()A第一象限 B第二象限C第三象限 D第四象限考点复数的几何意义题点复数与点的对应关系答案D解析m1,03m

6、21,m10,复数z(3m2)(m1)i在复平面内对应的点位于第四象限2满足|z|22|z|30的复数z的对应点的轨迹是()A一个圆 B线段C两个点 D两个圆考点复数的几何意义的综合应用题点利用几何意义解决轨迹、图形答案A解析由条件|z|22|z|30,得|z|3(|z|1舍去),|z|3表示一个圆3设复数z1a2i,z22i(i为虚数单位),且|z1|z2|,则实数a的取值范围是()Aa1 B1a1 Da0考点复数的模的定义与应用题点利用模的定义求参数答案B解析因为|z1|,|z2|,所以,即a245,所以a21,即1a1.4若复数z(m2)(m1)i为纯虚数(i为虚数单位),其中mR,则|

7、z|_.考点复数的模的定义与应用题点利用定义求复数的模答案3解析复数z(m2)(m1)i为纯虚数(i为虚数单位),所以m20且m10,解得m2,所以z3i,所以|z|3.5当实数m为何值时,复数(m28m15)(m23m28)i(i为虚数单位)在复平面中的对应点(1)位于第四象限;(2)位于x轴的负半轴上考点复数的几何意义题点复数与点的对应关系解(1)由得所以7m3.(2)由得所以m4.1复数的几何意义这种对应关系架起了复数与解析几何之间的桥梁,使得复数问题可以用几何方法解决,而几何问题也可以用复数方法解决(即数形结合法),增加了解决复数问题的途径(1)复数zabi(a,bR)的对应点的坐标为(a,b)而不是(a,bi);(2)复数zabi(a,bR)的对应向量是以原点O为起点的,否则就谈不上一一对应,因为复平面上与相等的向量有无数个2复数的模(1)复数zabi(a,bR)的模|z|;(2)从几何意义上理解,表示点Z和原点间的距离,类比向量的模可进一步引申:|z1z2|表示点Z1和点Z2之间的距离.