ImageVerifierCode 换一换
格式:DOCX , 页数:7 ,大小:101.83KB ,
资源ID:116416      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-116416.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020北师大版高中数学必修3滚动训练三(含答案))为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2020北师大版高中数学必修3滚动训练三(含答案)

1、滚动训练三(13)一、选择题1抛掷一枚骰子,落地时向上的点数是5的概率是()A. B.C. D.答案D解析掷一次骰子相当于做一次试验,因为骰子是均匀的,它有6个面,每个面朝上的机会是均等的,所以出现5点的概率是.2当你到一个红绿灯路口时,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为45秒,那么你看到黄灯的概率是()A. B. C. D.答案C解析由题意可知,在80秒内路口的红、黄、绿灯是随机出现的,可以认为是无限次等可能出现的,符合几何概型的条件事件“看到黄灯”的时间长度为5秒,而整个灯的变换时间长度为80秒,据几何概型概率计算公式,得看到黄灯的概率P.3从装有2个红球和2个白球的口袋内

2、任取2个球,那么互斥而不对立的两个事件是()A“至少有1个白球”和“都是红球”B“至少有1个白球”和“至多有1个红球”C“恰有1个白球”和“恰有2个白球”D“至多有1个白球”和“都是红球”答案C解析该试验有三种结果:“恰有1个白球”、“恰有2个白球”、“没有白球”,故“恰有1个白球”和“恰有2个白球”是互斥事件且不是对立事件4齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现双方各出上、中、下等马各一匹分组分别进行一场比赛,胜两场及以上者获胜,若双方均不知道对方马的出场顺序,则田忌获胜的概率为()A.

3、 B. C. D.考点古典概型计算公式题点古典概型概率公式的直接应用答案D解析设齐王的下等马、中等马、上等马分别记为a1,a2,a3,田忌的下等马、中等马、上等马分别记为b1,b2,b3,齐王与田忌赛马,其情况有:(a1,b1),(a2,b2),(a3,b3),齐王获胜;(a1,b1),(a2,b3),(a3,b2),齐王获胜;(a2,b1),(a1,b2),(a3,b3),齐王获胜;(a2,b1),(a1,b3),(a3,b2),齐王获胜;(a3,b1),(a1,b2),(a2,b3),田忌获胜;(a3,b1),(a1,b3),(a2,b2),齐王获胜,共6种其中田忌获胜的只有一种(a3,b

4、1),(a1,b2),(a2,b3),则田忌获胜的概率为,故选D.5两根电线杆相距100 m,若电线遭受雷击,且雷击点在距电线杆10 m之内时,电线杆上的输电设备将受损,则电线遭受雷击时设备受损的概率为()A0.1 B0.2C0.05 D0.5答案B解析所求概率P0.2.6在区间(10,20内的所有实数中,随机取一个实数a,则这个实数a小于13的概率是()A. B.C. D.答案C解析这是一个与长度有关的几何概型问题,所求的概率P.7如图,圆周上的6个点是该圆周的6个等分点,分别连接AC,CE,EA,BD,DF,FB,向圆内部随机投掷一点,则该点不落在阴影部分内的概率是()A1 B. C1 D

5、.考点几何概型计算公式题点与面积有关的几何概型答案A解析设圆的半径为1,则正六边形ABCDEF的边长为1,其面积为,如图将整个正六边形割成了3618(个)小三角形,那么整个阴影部分的面积是正六边形的面积的,故S阴影,圆的面积为S圆.故向圆内部随机投掷一点,该点不落在阴影部分内的概率是1.故选A.8已知集合A5,3,1,0,2,4,在平面直角坐标系中,点(x,y)的坐标满足xA,yA,且xy,则点(x,y)不在x轴上的概率()A. B. C. D.答案C解析因为xA,yA,且xy,所以x有6种可能,y有5种可能,所以试验的所有结果有6530(种),且每种结果的出现是等可能的设事件A为“点(x,y

6、)不在x轴上”,那么y0,有5种可能,x有5种可能,事件A包含基本事件个数为5525种因此所求事件的概率为P(A).9将一枚均匀的硬币先后抛掷两次,至少出现一次正面向上的概率是()A. B.C. D1答案C解析将一枚硬币先后抛掷两次包含的基本事件有(正,正),(正,反),(反,正),(反,反),共4种,至少出现一次正面向上包含了3种基本事件,故所求概率为.二、填空题10从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,则这个两位数大于40的概率为_答案解析可能构成的两位数有20个,其中大于40的两位数有41,42,43,45,51,52,53,54,共8个,所以所求概率P.11一批产

7、品共有100件,其中5件是次品,95件是合格品,从这批产品中任意抽5件,记A为“恰有1件次品”,B为“至少有2件次品”,C为“至少有1件次品”,D为“至多有1件次品”现给出下列结论:ABC;BD是必然事件;ACB;ADC.其中正确的结论为_(写出序号即可)答案解析由互斥、对立事件的概念得ABC,故错;AD表示“至多有1件次品”,所以错12甲、乙两名围棋选手在一次比赛中,甲胜的概率比乙胜的概率高0.05,和棋的概率为0.59,则乙胜的概率为_答案0.18解析设乙胜的概率为P,则甲胜的概率为P0.05,和棋的概率为0.59,所以PP0.050.591,故P0.18.三、解答题13现有甲、乙、丙、丁

8、4名学生参加学校社团文学社与街舞社的活动,每人参加且只能参加一个社团的活动,且参加每个社团是等可能的(1)求文学社和街舞社都至少有1人参加的概率;(2)求甲、乙在同一个社团,且丙、丁不在同一个社团的概率解甲、乙、丙、丁4名学生参加学校社团文学社与街舞社的情况如下,文学社街舞社1甲乙丙丁2甲乙丙丁3甲乙丁丙4甲丙丁乙5乙丙丁甲6甲乙丙丁7甲丙乙丁8甲丁乙丙9乙丙甲丁10乙丁甲丙11丙丁甲乙12甲乙丙丁13乙甲丙丁14丙甲乙丁15丁甲乙丙16甲乙丙丁共有16种情形,即有16个基本事件(1)文学社或街舞社没有人参加的基本事件有2个,则都至少有1人参加的基本事件有14个,概率为,即文学社和街舞社都至少

9、有1人参加的概率为.(2)甲、乙同在一个社团,且丙、丁不同在一个社团的基本事件有4个,概率为.四、探究与拓展14甲、乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张(1)写出甲、乙二人抽到的牌的所有情况;(2)若甲抽到红桃3,则乙抽出的牌的牌面数字比3大的概率是多少?(3)甲、乙约定,若甲抽到的牌的牌面数字比乙大,则甲胜,否则乙胜,你认为此游戏是否公平?说明你的理由解(1)设(i,j)表示(甲抽到的牌的数字,乙抽到的牌的数字),则甲、乙二人抽到的牌的所有情况(方片4用4表示)为(2,3),(2,4

10、),(2,4),(3,2),(3,4),(3,4),(4,2),(4,3),(4,4),(4,2),(4,3),(4,4),共12种(2)甲抽到红挑3,乙抽到的牌只能是红桃2,红桃4,方片4.因此乙抽到的牌的数字大于3的概率为.(3)由(1)可知甲抽到的牌的牌面数字比乙大有(3,2),(4,2),(4,3),(4,2),(4,3),共5种情况,甲胜的概率P1,乙胜的概率P2.,此游戏不公平15已知定义在R上的二次函数f(x)ax22bx3.(1)如果a是集合1,2,3,4中的任一元素,b是集合0,2,3中的任一元素,试求函数f(x)在区间1,)上是增函数的概率;(2)如果a是从区间1,4上任取的一个数,b是从区间0,3上任取的一个数,试求函数f(x)在区间1,)上是增函数的概率解(1)由题意知基本事件(a,b)有(1,0),(1,2),(1,3),(2,0),(2,2),(2,3),(3,0),(3,2),(3,3),(4,0),(4,2),(4,3),共12个要使函数f(x)在1,)上是增函数,只需对称轴x1即可,满足条件的基本事件有9个,所以所求概率为0.75.(2)这是一个几何概型,易知当(a,b)落在图中阴影部分时,f(x)在1,)上是增函数,故所求概率为.