ImageVerifierCode 换一换
格式:DOCX , 页数:10 ,大小:199.64KB ,
资源ID:115772      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-115772.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(§1 同角三角函数的基本关系 学案(含答案))为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

§1 同角三角函数的基本关系 学案(含答案)

1、1同角三角函数的基本关系学习目标1.能通过三角函数的定义推导出同角三角函数的基本关系式.2.理解同角三角函数的基本关系式.3.能运用同角三角函数的基本关系式进行三角函数式的化简、求值和证明知识点同角三角函数的基本关系式1同角三角函数的基本关系式(1)平方关系:sin2cos21.(2)商数关系:tan .2同角三角函数基本关系式的变形(1)sin2cos21的变形公式sin21cos2;cos21sin2.(2)tan 的变形公式sin cos_tan_;cos .1sin2cos21.()提示在同角三角函数的基本关系式中要注意是“同角”才成立,即sin2cos21.2sin2cos21.()

2、提示在sin2cos21中,令可得sin2cos21.3对任意的角,都有tan 成立()提示当k,kZ时就不成立4若cos 0,则sin 1.()题型一利用同角三角函数的关系式求值命题角度1已知角的某一三角函数值及所在象限,求角的其余三角函数值例1(1)若sin ,且为第四象限角,则tan 的值为()A. B C. D答案D解析sin ,且为第四象限角,cos ,tan ,故选D.(2)已知sin cos ,(0,),则tan _.考点运用基本关系式求三角函数值题点运用基本关系式求三角函数值答案解析sin cos ,(sin cos )2,即2sin cos 0,cos 0,故sin cos

3、,可得sin ,cos ,tan .反思感悟(1)同角三角函数的关系揭示了同角三角函数之间的基本关系,其常用的用途是“知一求二”,即在sin ,cos ,tan 三个值之间,知道其中一个可以求其余两个解题时要注意角的象限,从而判断三角函数值的正负(2)已知三角函数值之间的关系式求其它三角函数值的问题,我们可利用平方关系或商数关系求解,其关键在于运用方程的思想及(sin cos )212sin cos 的等价转化,找到解决问题的突破口跟踪训练1已知tan ,且是第三象限角,求sin ,cos 的值解由tan ,得sin cos .又sin2cos21,由得cos2cos21,即cos2.又是第三

4、象限角,cos ,sin cos .命题角度2已知角的某一三角函数值,未给出所在象限,求角的其余三角函数值例2已知cos ,求sin ,tan 的值解cos 0,且cos 1,是第二或第三象限角(1)当是第二象限角时,则sin ,tan .(2)当是第三象限角时,则sin ,tan .反思感悟利用同角三角函数关系式求值时,若没有给出角是第几象限角,则应分类讨论,先由已知三角函数的值推出的终边可能在的象限,再分类求解跟踪训练2已知cos ,求sin ,tan 的值解cos 0,是第二或第三象限角(1)若是第二象限角,则sin ,tan .(2)若是第三象限角,则sin ,tan .题型二齐次式求

5、值问题例3已知tan 2,求下列代数式的值(1);(2)sin2sin cos cos2.考点运用基本关系式化简和证明题点运用基本关系式化简、求值解(1)原式.(2)原式.反思感悟(1)关于sin ,cos 的齐次式,可以通过分子、分母同除以cos 或cos2转化为关于tan 的式子后再求值(2)假如代数式中不含分母,可以视分母为1,灵活地进行“1”的代换,由1sin2cos2代换后,再同除以cos2,构造出关于tan 的代数式跟踪训练3已知2,计算下列各式的值(1);(2)sin22sin cos 1.考点运用基本关系式化简和证明题点运用基本关系式化简、求三角函数值解由2,化简,得sin 3

6、cos ,所以tan 3.(1)原式.(2)原式111.题型三三角函数式的化简与证明例4(1)化简:sin2tan 2sin cos .考点运用基本关系式化简和证明题点运用基本关系式化简解原式sin2cos22sin cos .(2)求证:.考点运用基本关系式化简和证明题点运用基本关系式证明证明右边左边,原等式成立反思感悟(1)三角函数式的化简技巧化切为弦,即把正切函数都化为正、余弦函数,从而减少函数名称,达到化繁为简的目的对于含有根号的,常把根号里面的部分化成完全平方式,然后去根号达到化简的目的对于化简含高次的三角函数式,往往借助于因式分解,或构造sin2cos21,以降低函数次数,达到化简

7、的目的(2)证明三角恒等式的过程,实质上是化异为同的过程,证明恒等式常用以下方法:证明一边等于另一边,一般是由繁到简证明左、右两边等于同一个式子(左、右归一)比较法:即证左边右边0或1(右边0)证明与已知等式等价的另一个式子成立,从而推出原式成立跟踪训练4化简:.考点运用基本关系式化简和证明题点运用基本关系式化简解原式1.同角三角函数基本关系式求值典例设是第三象限角,问是否存在这样的实数m,使得sin ,cos 是关于x的方程8x26mx2m10的两个根?若存在,求出实数m;若不存在,说明理由考点运用基本关系式求三角函数值题点运用基本关系式求三角函数值解倘若存在这样的实数m满足条件,由题设得:

8、36m232(2m1)0,是第三象限角,sin 0,cos 0,sin cos m0.又sin2cos21,(sin cos )22sin cos 1.把,代入上式得221,即9m28m200,解得m12,m2.m12不满足条件,舍去,m2不满足条件,舍去故这样的实数m不存在素养评析通过反设存在满足条件的m,列出所需限定条件根据同角三角函数基本关系式运算推理求出并验证相应的值,这正是数学核心素养逻辑推理的具体体现.1若sin ,且是第二象限角,则tan 的值等于()A B. C D答案A解析为第二象限角,sin ,cos ,tan .2已知sin cos ,则sin cos 等于()A. B

9、C D.答案C解析由题得(sin cos )2,即sin2cos22sin cos ,又sin2cos21,12sin cos ,sin cos .故选C.3(2018江西上高第二中学高二期末)若为第三象限角,则的值为()A3 B3 C1 D1考点运用基本关系式化简和证明题点运用基本关系式化简答案B解析为第三象限角,cos 0,sin 0,是第一或第二象限角当为第一象限角时,cos ,tan ;当为第二象限角时,cos ,tan .1利用同角三角函数的基本关系式,可以由一个角的一个三角函数值,求出这个角的其他三角函数值2利用同角三角函数的关系式可以进行三角函数式的化简,结果要求:(1)项数尽量

10、少;(2)次数尽量低;(3)分母、根式中尽量不含三角函数;(4)能求值的尽可能求值3在三角函数的变换求值中,已知sin cos ,sin cos ,sin cos 中的一个,可以利用方程思想,求出另外两个的值4在进行三角函数式的化简或求值时,细心观察题目的特征,灵活、恰当地选用公式,统一角、统一函数、降低次数是三角函数关系式变形的出发点利用同角三角函数的基本关系主要是统一函数,要掌握“切化弦”和“弦化切”的方法5在化简或恒等式证明时,注意方法的灵活运用,常用技巧:(1)“1”的代换;(2)减少三角函数的个数(化切为弦、化弦为切等);(3)多项式运算技巧的应用(如因式分解、整体思想等);(4)对条件或结论的重新整理、变形,以便于应用同角三角函数关系来求解.