ImageVerifierCode 换一换
格式:DOCX , 页数:10 ,大小:89.51KB ,
资源ID:115573      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-115573.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(第8章 解三角形 章末检测卷(含答案))为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

第8章 解三角形 章末检测卷(含答案)

1、章末检测卷(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.在ABC中,sin2Asin2Bsin2CsinBsinC,则A的取值范围是()A.(0, B.,)C.(0, D.,)答案C解析由正弦定理,得a2b2c2bc,由余弦定理,得a2b2c22bccosA,则cosA,0A,0A.2.在ABC中,sinA,a10,则边长c的取值范围是()A.B.(10,)C.(0,10) D.答案D解析,csinC.00),根据余弦定理得,cosC.5.ABC的内角A,B,C的对边分别为a,b,c,若ABC的面积为,则C()A. B. C. D.答案C解析因

2、为SABCabsin C,所以absin C.由余弦定理a2b2c22abcos C,得2abcos C2absin C,即cos Csin C,所以在ABC中,C.故选C.6.在ABC中,已知cosAcosBsinAsinB,则ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形答案C解析由cosAcosBsinAsinB,得cosAcosBsinAsinBcos(AB)0,AB90,C为钝角.7.在ABC中,已知a,b,A30,则c等于()A.2B.C.2或D.以上都不对答案C解析a2b2c22bccosA,515c22c.化简得:c23c100,即(c2)(c)0,c2或

3、c.8.已知ABC中,sinAsinBsinCk(k1)2k,则k的取值范围是()A.(2,) B.(,0)C.(,0) D.(,)答案D解析由正弦定理得:amk,bm(k1),c2mk(m0),即k.9.ABC的两边长分别为2,3,其夹角的余弦值为,则其外接圆的半径为()A. B. C. D.9答案C解析设另一条边为x,则x22232223,x29,x3.设cos,则sin.2R,R.10.在ABC中,cos ,BC1,AC5,则AB()A.4 B. C. D.2答案A解析因为cos ,所以cos C2cos2 121.于是,在ABC中,由余弦定理得AB2AC2BC22ACBCcos C52

4、1225132,所以AB4.故选A.11.在ABC中,角A,B,C所对的边分别为a,b,c,若cosA,则ABC为()A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形答案A解析依题意得cosA,sinCsinBcosA,所以sin(AB)sinBcosA,即sinBcosAcosBsinAsinBcosA0,所以cosBsinA0,于是有cosBBC,3b20acosA,则sinAsinBsinC为()A.432B.567C.543D.654答案D解析由题意可设ab1,cb1.又3b20acosA,3b20(b1).整理得,7b227b400.解得,b5,故a6,b5,c4,即sinA

5、sinBsinCabc654.二、填空题(本大题共4小题,每小题5分,共20分)13.已知ABC中,3a22ab3b23c20,则cosC的大小是_.答案解析由3a22ab3b23c20,得c2a2b2ab.根据余弦定理,cosC,所以cosC.14.在ABC中,若bc2a,3sinA5sinB,则角C_.答案解析由已知3sinA5sinB,利用正弦定理可得3a5b.由3a5b,bc2a,利用余弦定理得cosC.C(0,),C.15.在ABC中,已知cosA,cosB,b3,则c_.答案解析在ABC中,cosA0,sinA.cosB0,sinB.sinCsin(AB)sin(AB)sinAco

6、sBcosAsinB.由正弦定理知,c.16.太湖中有一小岛,沿太湖有一条正南方向的公路,一辆汽车在公路上测得小岛在南偏西15的方向上,汽车行驶1km后,又测得小岛在南偏西75的方向上,则小岛到公路的距离是_km.答案解析如图,CAB15,CBA18075105,ACB1801051560,AB1km.由正弦定理得,BCsin15 (km).设C到直线AB的距离为d,则dBCsin75 (km).三、解答题(本大题共6小题,共70分)17.(本小题满分10分)已知ABC的内角A,B,C所对的边分别为a,b,c,且a2,cosB.(1)若b4,求sinA的值;(2)若ABC的面积SABC4,求b

7、,c的值.解cosB0,且0B,sinB.(1)若b4,由正弦定理得,sinA.(2)SABCacsinB4,2c4,c5.由余弦定理得b2a2c22accosB225222517,b.18. (本小题满分12分)在ABC中,a3,b2,B2A.(1)求cosA的值;(2)求c的值.解(1)因为a3,b2,B2A,所以在ABC中,由正弦定理得.所以.故cosA.(2)由(1)知cosA,所以sinA.又因为B2A,所以cosB2cos2A1.所以sinB.在ABC中,sinCsin(AB)sinAcosBcosAsinB.所以c5.19.(本小题满分12分)在平面四边形ABCD中,ADC90,

8、A45,AB2,BD5.(1)求cosADB;(2)若DC2,求BC.解(1)在ABD中,由正弦定理得,即,所以sinADB.由题设知,ADB90,所以cosADB.(2)由题设及(1)知,cosBDCsinADB.在BCD中,由余弦定理得BC2BD2DC22BDDCcosBDC25825225.所以BC5.20.(本小题满分12分)在ABC中,内角A,B,C所对的边分别为a,b,c.已知bsin Aacos.(1)求角B的大小;(2)设a2,c3,求b和sin(2AB)的值.解(1)在ABC中,由正弦定理,可得bsin Aasin B,又由bsin Aacos,得asin Bacos,即si

9、n Bcos,可得tan B.又因为B(0,),可得B.(2)在ABC中,由余弦定理及a2,c3,B,有b2a2c22accos B7,故b.由bsin Aacos,可得sin A.因为ac,故cos A.因此sin 2A2sin Acos A,cos 2A2cos2A1.所以,sin(2AB)sin 2Acos Bcos 2Asin B.21. (本小题满分12分)如图,在平面四边形ABCD中,DAAB,DE1,EC,EA2,ADC,BEC.(1)求sinCED的值;(2)求BE的长.解如图,设CED.(1)在CDE中,由余弦定理,得EC2CD2DE22CDDEcosEDC.于是由题设知,7

10、CD21CD,即CD2CD60.解得CD2(CD3舍去).在CDE中,由正弦定理,得.于是,sin,即sinCED.(2)由题设知,0,于是由(1)知,cos.而AEB,所以cosAEBcos()coscossinsincossin.在RtEAB中,cosAEB,故BE4.22. (本小题满分12分)某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O北偏西30且与该港口相距20海里的A处,并正以30海里/时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/时的航行速度匀速行驶,经过t小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度

11、的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇.解(1)设相遇时小艇航行的距离为S海里,则S.故当t时,Smin10(海里),此时v30(海里/时).即小艇以30海里/时的速度航行,相遇时小艇的航行距离最小.(2)设小艇与轮船在B处相遇,则v2t2400900t222030tcos(9030),故v2900,0v30,900900,即0,解得t.又t时,v30海里/时.故v30海里/时时,t取得最小值,且最小值等于.此时,在OAB中,有OAOBAB20海里,故可设计航行方案如下:航行方向为北偏东30,航行速度为30海里/时,小艇能以最短时间与轮船相遇.