ImageVerifierCode 换一换
格式:DOCX , 页数:6 ,大小:120.44KB ,
资源ID:115130      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-115130.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(4.5.3 利用坐标计算数量积 学案(含答案))为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

4.5.3 利用坐标计算数量积 学案(含答案)

1、4.5.3利用坐标计算数量积学习目标1.理解掌握向量数量积的坐标表达式,会利用坐标进行数量积的运算.2.掌握向量的模、夹角等公式,能根据公式解决向量的模、夹角、垂直等有关问题知识链接1已知非零向量a(x1,y1),b(x2,y2)ab与ab坐标表示有何区别?答若abx1y2x2y1,即x1y2x2y10.若abx1x2y1y2,即x1x2y1y20.两个结论不能混淆,可以对比学习,分别简记为:纵横交错积相等,横横纵纵积相反2你能用向量法推导两点间距离公式|吗?答(x2x1,y2y1),2|2(x2x1)2(y2y1)2,即|.预习导引1平面向量数量积的坐标表示若u(x1,y1),v(x2,y2

2、),则uvx1x2y1y2.即两个向量的数量积等于它们对应坐标的乘积的和2两个向量垂直的坐标表示设两个非零向量u(x1,y1),v(x2,y2),则uvx1x2y1y20.3三个重要公式(1)向量模公式:设u(x1,y1),则|u|.(2)两点间距离公式:若A(x1,y1),B(x2,y2),则|.(3)向量的夹角公式设两非零向量u(x1,y1),v(x2,y2),则cosu,v.题型一向量数量积的坐标运算例1已知向量a与b同向,b(1,2),ab10,求:(1)向量a的坐标;(2)若c(2,1),求(ac)b.解(1)a与b同向,且b(1,2),ab(,2)(0)又ab10,410,2,a(

3、2,4)(2)ac22(1)40,(ac)b0b0.规律方法(1)通过向量的坐标表示实现向量问题代数化,应注意与方程、函数等知识的联系(2)向量问题的处理有两种思路:一种是纯向量式,另一种是坐标式,两者互相补充跟踪演练1已知向量a(1,3),b(2,5),c(2,1)求:(1)ab;(2)(ab)(2ab);(3)(ab)c,a(bc)解(1)ab(1,3)(2,5)123517.(2)ab(1,3)(2,5)(3,8),2ab2(1,3)(2,5)(2,6)(2,5)(0,1),(ab)(2ab)(3,8)(0,1)30818.(3)(ab)c17c17(2,1)(34,17),a(bc)a

4、(2,5)(2,1)(1,3)(2251)9(1,3)(9,27)题型二两向量的夹角例2已知(2,1),(1,7),(5,1),设C是直线OP上的一点(其中O为坐标原点)(1)求使取得最小值时的;(2)对(1)中求出的点C,求cosACB.解(1)点C是直线OP上的一点,向量与共线,设t(tR),则t(2,1)(2t,t),(12t,7t),(52t,1t),(12t)(52t)(7t)(1t)5t220t125(t2)28.当t2时,取得最小值,此时(4,2)(2)由(1)知(4,2),(3,5),(1,1),|,|,358.cosACB.规律方法应用向量的夹角公式求夹角时,应先分别求出两个

5、向量的模,再求出它们的数量积,最后代入公式求出夹角的余弦值,进而求出夹角跟踪演练2已知向量ae1e2,b4e13e2,其中e1(1,0),e2(0,1)(1)试计算ab及|ab|的值;(2)求向量a与b夹角的余弦值解(1)ae1e2(1,0)(0,1)(1,1),b4e13e24(1,0)3(0,1)(4,3),ab413(1)1,|ab|.(2)ab|a|b|cos,cos.题型三向量垂直的坐标表示例3已知在ABC中,A(2,1),B(3,2),C(3,1),AD为BC边上的高,求|与点D的坐标解设D点坐标为(x,y),则(x2,y1),(6,3),(x3,y2),D在直线BC上,即与共线,

6、6(y2)3(x3)0,即x2y10.又ADBC,0,即(x2,y1)(6,3)0,6(x2)3(y1)0.即2xy30.由可得|,即|,点D的坐标为(1,1)规律方法将题目中的隐含条件挖掘出来,然后坐标化,运用方程的思想进行求解是解向量题常用的方法跟踪演练3已知a,ab,ab,若AOB是以O为直角顶点的等腰直角三角形,求向量b.解设向量b(x,y)根据题意,得0,|.(ab)(ab)0,|ab|ab|,|a|b|,ab0.又a,即解得或b或b.课堂达标1已知a(3,1),b(1,2),则a与b的夹角为()A. B.C.D.答案B解析ab325,|a|,|b|,设夹角为,则cos.又0,.2已

7、知平面向量a(2,4),b(1,2),若ca(ab)b,则|c|等于()A4 B2C8D8答案D解析易得ab2(1)426,所以c(2,4)6(1,2)(8,8),所以|c|8.3在ABC中,C90,(k,1),(2,3),则k的值为_答案5解析(2,3)(k,1)(2k,2),(2,3),2(2k)60,k5.4已知平面向量a(1,x),b(2x3,x),xR.(1)若ab,求x的值;(2)若ab,求|ab|.解(1)若ab,则ab(1,x)(2x3,x)1(2x3)x(x)0,即x22x30,解得x1或x3.(2)若ab,则1(x)x(2x3)0,即x(2x4)0,解得x0或x2.当x0时,a(1,0),b(3,0),ab(2,0),|ab|2.当x2时,a(1,2),b(1,2),ab(2,4),|ab|2.课堂小结1.引入向量坐标后,使向量的数量积的运算和两个向量的坐标运算联系起来,利用坐标求模(长度)更为简单若u(x1,y1),v(x2,y2),则|u|,uvx1x2y1y2.2用坐标证明直线与直线垂直,可以转化成证两向量的数量积x1x2y1y20.3根据向量的坐标求向量的夹角,直接利用公式cosu,v来求,同时注意角的范围