1、2.2.2换底公式基础过关1(log29)(log34)等于()A.B.C2D4答案D解析原式(log232)(log322)4(log23)(log32)44.2化简的结果为()Alog38Blog83Clog36Dlog63答案A解析原式log32log34log38,故选A.3已知ln2a,ln3b,那么log32用含a,b的代数式表示为()AabB.CabDab答案B解析log32,故选B.4若lga,lgb是方程2x24x10的两个根,则2的值等于()A2B.C4D.答案A解析由根与系数的关系,得lgalgb2,lgalgb,2(lgalgb)2(lgalgb)24lgalgb224
2、2.5(log43log83)(log32log98)_.答案解析原式()()()().6已知lg9a,10b5,用a,b表示log3645为_答案解析lg9a,10b5,lg5b,log3645.7计算:(1)lg5lg8000(lg2)2lg0.06lg6;(2).解(1)原式lg5(3lg23)3(lg2)2lg62lg63lg5lg23lg53(lg2)223lg2(lg5lg2)3lg523lg23lg521.(2)原式.能力提升8若a1,b1,且lg(ab)lgalgb,则lg(a1)lg(b1)的值为()Alg2B1C0D不确定答案C解析lg(ab)lgalgblg(ab)aba
3、b,lg(a1)lg(b1)lgab(ab)1lg10.9若log37log29log49alog4,则a_.答案解析log37log29log49alog4.,a2.10若logax2,logbx3,logcx6,则logabcx的值为_答案1解析logabcx,logax2,logbx3,logcx6,logxa,logxb,logxc,logabcx1.11若26a33b62c,求证:.证明设26a33b62ck (k0),那么6logk223logk3logk(2636)6logk632logk6,即.12设a1,若对于任意的xa,2a,都有ya,a2满足方程logaxlogay3,求
4、a的取值范围解logaxlogay3,logaxy3,xya3,y.函数y(a1)在a,2a上为减函数,又当xa时,ya2,当x2a时,y,a,a2,a,又a1,a2,a的取值范围为a2.创新突破13设x,y,z均为正数,且3x4y6z.(1)试求x,y,z之间的关系;(2)求使2xpy成立,且与p最接近的正整数(即求与p的差的绝对值最小的整数);(3)比较3x,4y,6z的大小解(1)设3x4y6zt,由x0,知t1,故取以t为底的对数,得xlogt3ylogt4zlogt61,x,y,z,logt6logt3logt2logt4,x,y,z之间的关系为.(2)plogt42log34log316.由91627,得log39log316log327,从而2p3.而p2log316log39log3,3plog327log316log3.由1,得.p2log3log33p,故所求正整数为3.(3)3x4y3log3t4log4tlgt()(lg43lg34)而lgt0,lg30,lg40,lg43lg34,3x4y.又4y6z2(2log4t3log6t)2().而lgt0,lg40,lg60,lg62lg43,4y6z,故有3x4y6z